Compound fault diagnosis method for rolling bearings based on enhanced MED and adaptive periodized symplectic geometry mode decomposition

辛几何 断层(地质) 分解 几何学 模式(计算机接口) 计算机科学 数学 地质学 化学 地震学 操作系统 有机化学
作者
Shengqiang Li,Changfeng Yan,Yunfeng Hou,Bin Liu,Yu Tian,Lixiao Wu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251314703
摘要

Rolling bearing compound faults (RBCF) always interact and couple with each other, which makes it tremendously challenging to accurately diagnose them by processing the collected vibration signals. For the sake of separating and extracting fault features in RBCF, a novel method based on enhanced minimum entropy deconvolution (EMED) with adaptive periodized symplectic geometry mode decomposition (APSGMD) is proposed. First, weighted unbiased autocorrelation kurtosis is established as the new objective function to determine the optimal inverse filter coefficients of EMED method, which can enhance periodic impulse components of weak fault and eliminate background noise in RBCF signal. Second, for proposed APSGMD method, the termination condition based on cosine difference factor and kurtosis criterion are employed to adaptively select symplectic geometry components (SGCs), and a criterion for selecting singular value pairs is established to enhance the periodic impulse components of each SGC obtained. Finally, hierarchical clustering is leveraged to classify and reconstruct SGCs with different fault periods. A comprehensive simulation model is developed for RBCF to testify this method. The experimental results show that inner ring and outer ring faults, inner ring and ball faults, outer ring and ball faults, and inner–outer ring and ball faults can be accurately diagnosed by the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助时光清浅采纳,获得10
刚刚
刚刚
1秒前
2秒前
2秒前
思源应助小王同学采纳,获得10
2秒前
李卓航发布了新的文献求助10
2秒前
3秒前
3秒前
大个应助小白菜阿唐采纳,获得10
4秒前
zdw发布了新的文献求助10
4秒前
4秒前
z7777777发布了新的文献求助10
4秒前
WUHUIWEN完成签到,获得积分10
5秒前
宇少爱学习哟完成签到,获得积分10
5秒前
6秒前
6秒前
大模型应助liu采纳,获得10
7秒前
公西翠萱发布了新的文献求助10
7秒前
吹啊完成签到,获得积分10
8秒前
王扭扭完成签到,获得积分10
8秒前
cy发布了新的文献求助10
8秒前
英姑应助yydsyk采纳,获得30
8秒前
漂亮的抽屉完成签到,获得积分10
9秒前
9秒前
you发布了新的文献求助10
9秒前
共享精神应助YY采纳,获得10
9秒前
9秒前
李健的小迷弟应助ddl7采纳,获得10
9秒前
9秒前
顾矜应助yolo采纳,获得10
9秒前
李卓航完成签到,获得积分10
11秒前
11秒前
11秒前
baoleijia发布了新的文献求助10
11秒前
11秒前
12秒前
MOD完成签到,获得积分10
12秒前
12秒前
遇见完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468830
求助须知:如何正确求助?哪些是违规求助? 3061848
关于积分的说明 9077239
捐赠科研通 2752315
什么是DOI,文献DOI怎么找? 1510388
科研通“疑难数据库(出版商)”最低求助积分说明 697771
邀请新用户注册赠送积分活动 697751