纳米团簇
铜
键裂
金属
硫化物
星团(航天器)
劈理(地质)
结晶学
硫化铜
材料科学
化学
催化作用
纳米技术
有机化学
复合材料
断裂(地质)
计算机科学
程序设计语言
作者
Yuhao Jin,Zhenyi Zhang,Huijuan Zheng,Xianghan Cheng,Longlong Geng,Zheng Zhou,Haixiang Han
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-11-25
标识
DOI:10.1021/acsnano.4c13264
摘要
This work represents an important step in the quest to unveil the formation mechanism of atomically precise binary semiconductor nanoclusters. In this study, we develop an acid-assisted C–S bond cleavage approach, wherein the C–S bonds in the metal thiolate precursor can be readily cleaved to release S2– with the assistance of a suitable acid in the presence of Cu2O as the catalyst. This process spontaneously fosters the formation of a [−Cu–S–Cu−] framework and promotes the structural growth into a high nuclearity assembly. Specifically, by employing Cu(I) tert-butyl thiolate ([CuStBu]∞) and carboxylate acid CH2═CHCOOH as the copper/sulfur precursor and C–S bond "scissor", a high-nuclearity nanocluster [S–Cu56] (Cu56S12(OOCCH═CH2)12(SC(CH3)3)20) featuring a double-shell configuration has been effectively prepared in high yield. Importantly, the [CuStBu]∞ precursor and the intermediate [S–Cu14] (Cu14(StBu)8(OOCCH═CH2)6) cluster have also been successfully isolated and structurally characterized, which ultimately enables the establishment of a two-step formation pathway for the [S–Cu56] nanocluster. Furthermore, in contrast to conventional reduction synthetic routes for metal nanoclusters containing Cu(0) or Cu(I), the acid-assisted C–S bond cleavage approach represents an oxidation process with respect to the constituent metals, yielding highly charged Cu(II) cations in the copper sulfide nanocluster.
科研通智能强力驱动
Strongly Powered by AbleSci AI