A method for reconstruction of structural health monitoring data using WGANGP with U-net generator

发电机(电路理论) 网(多面体) 计算机科学 环境科学 数学 物理 功率(物理) 几何学 量子力学
作者
Yi-Kai Zhu,Hua‐Ping Wan,Michael D. Todd
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241313438
摘要

Data loss issue often occurs in structural health monitoring (SHM), which can undermine the reliability of structural condition diagnosis and prognosis. Neural networks are commonly employed for reconstruction of missing SHM data by modeling the correlation between intact and missing signals. The existing neural network methods use deeper architectures to capture complex data correlations. As network depth increases, the ability to preserve both low- and high-level features diminishes, and network training becomes challenging, which reduces data reconstruction accuracy. This study proposes a data reconstruction method that utilizes a Wasserstein generative adversarial network containing a gradient penalty term with a U-net generator. Multiple improvements are made to the generative adversarial network to enhance the reconstruction performance. First, the U-net is used as a generator, and the signal features at low and high levels are preserved based on the skip-connection technique. The U-net is pre-set with multiple layers to enhance the reconstruction accuracy. Second, a mean square error (MSE) term is added to the loss function. The MSE coefficient is proposed to balance adversarial training and reconstruction feature learning. Third, the Wasserstein distance is introduced to replace the cross-entropy loss function of traditional generative adversarial networks, avoiding gradient vanishing and exploding. The reconstruction performance of the proposed method is evaluated on a computational bridge model and Canton Tower, and the influence of reconstruction parameters on the accuracy of reconstruction results is discussed in detail. The reconstructed data by the proposed method closely matches the original data in both the time domain and frequency domain. The time–frequency characteristics of the acceleration data can be accurately reconstructed, demonstrating the effectiveness of the reconstructed signals in data analysis. By comparing with typical neural network methods, it is found that the proposed method has higher reconstruction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
dong应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
4秒前
4秒前
Fighter发布了新的文献求助10
5秒前
DENANANA完成签到 ,获得积分20
5秒前
Zjx发布了新的文献求助10
8秒前
GGbound完成签到,获得积分10
9秒前
mlll发布了新的文献求助10
9秒前
12秒前
15秒前
希望天下0贩的0应助mlll采纳,获得10
16秒前
GGbound发布了新的文献求助10
16秒前
17秒前
17秒前
syp完成签到,获得积分10
20秒前
电致阿光发布了新的文献求助10
20秒前
21秒前
lidongxing发布了新的文献求助10
21秒前
syp发布了新的文献求助10
23秒前
23秒前
所所应助wise111采纳,获得10
24秒前
27秒前
哆啦猫发布了新的文献求助10
30秒前
lululu完成签到,获得积分10
30秒前
筱梦完成签到,获得积分10
31秒前
34秒前
123456完成签到 ,获得积分10
35秒前
createup完成签到,获得积分10
39秒前
哆啦猫完成签到,获得积分10
41秒前
明亮芯关注了科研通微信公众号
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652