A method for reconstruction of structural health monitoring data using WGANGP with U-net generator

发电机(电路理论) 网(多面体) 计算机科学 环境科学 数学 物理 功率(物理) 几何学 量子力学
作者
Yi-Kai Zhu,Hua‐Ping Wan,Michael D. Todd
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241313438
摘要

Data loss issue often occurs in structural health monitoring (SHM), which can undermine the reliability of structural condition diagnosis and prognosis. Neural networks are commonly employed for reconstruction of missing SHM data by modeling the correlation between intact and missing signals. The existing neural network methods use deeper architectures to capture complex data correlations. As network depth increases, the ability to preserve both low- and high-level features diminishes, and network training becomes challenging, which reduces data reconstruction accuracy. This study proposes a data reconstruction method that utilizes a Wasserstein generative adversarial network containing a gradient penalty term with a U-net generator. Multiple improvements are made to the generative adversarial network to enhance the reconstruction performance. First, the U-net is used as a generator, and the signal features at low and high levels are preserved based on the skip-connection technique. The U-net is pre-set with multiple layers to enhance the reconstruction accuracy. Second, a mean square error (MSE) term is added to the loss function. The MSE coefficient is proposed to balance adversarial training and reconstruction feature learning. Third, the Wasserstein distance is introduced to replace the cross-entropy loss function of traditional generative adversarial networks, avoiding gradient vanishing and exploding. The reconstruction performance of the proposed method is evaluated on a computational bridge model and Canton Tower, and the influence of reconstruction parameters on the accuracy of reconstruction results is discussed in detail. The reconstructed data by the proposed method closely matches the original data in both the time domain and frequency domain. The time–frequency characteristics of the acceleration data can be accurately reconstructed, demonstrating the effectiveness of the reconstructed signals in data analysis. By comparing with typical neural network methods, it is found that the proposed method has higher reconstruction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王滕发布了新的文献求助10
1秒前
zxy应助铅笔羊采纳,获得10
1秒前
1秒前
。.。发布了新的文献求助10
2秒前
慕青应助谦让语兰采纳,获得10
2秒前
天天快乐应助Lyncus采纳,获得10
3秒前
欢呼洋葱应助feng_qi001采纳,获得10
4秒前
武雨寒发布了新的文献求助10
5秒前
5秒前
wanci应助Cloud采纳,获得10
6秒前
gyf发布了新的文献求助10
6秒前
奥黛丽赫本完成签到,获得积分10
6秒前
科研仔发布了新的文献求助10
6秒前
czz关闭了czz文献求助
6秒前
8秒前
乐乐应助车代桃采纳,获得10
8秒前
慕青应助股骨头坏死采纳,获得10
9秒前
徐翩跹给徐翩跹的求助进行了留言
9秒前
FashionBoy应助平淡扬采纳,获得30
10秒前
10秒前
斯文败类应助zero采纳,获得10
12秒前
13秒前
13秒前
FashionBoy应助王滕采纳,获得20
13秒前
平淡扬完成签到,获得积分10
14秒前
Orange应助张好好采纳,获得10
15秒前
15秒前
SgZyKn发布了新的文献求助10
16秒前
不安青牛应助科研通管家采纳,获得10
16秒前
穆紫应助科研通管家采纳,获得10
16秒前
Wfy应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
毛豆应助GUGU采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得30
17秒前
科研通AI2S应助GUGU采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463229
求助须知:如何正确求助?哪些是违规求助? 3056638
关于积分的说明 9053048
捐赠科研通 2746497
什么是DOI,文献DOI怎么找? 1506946
科研通“疑难数据库(出版商)”最低求助积分说明 696243
邀请新用户注册赠送积分活动 695849