Anisotropic Plasmon Resonance in Ti3C2Tx MXene Enables Site-Selective Plasmonic Catalysis

等离子体子 表面等离子共振 材料科学 各向异性 共振(粒子物理) 纳米材料基催化剂 纳米材料 光电子学 纳米技术 纳米颗粒 光学 物理 原子物理学
作者
Zhiyi Wu,J Shen,Zimu Li,Shuang Liu,Yuxuan Zhou,Kai Feng,Binbin Zhang,Shiqi Zhao,Di Xue,Jiari He,Kewei Yu,Jinpan Zhang,Graham Dawson,Qingfeng Zhang,Lizhen Huang,Chaoran Li,Xingda An,Lifeng Chi,Xiaohong Zhang,Le He
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c17316
摘要

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in Ti3C2Tx MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy. Both experimental and theoretical studies provide direct evidence of the occurrence of transverse and longitudinal dipolar plasmon resonance modes, respectively, driven by in-plane and out-of-plane vibrations of the two-dimensional (2D) MXene nanoflakes. Wavelength-controlled excitation of the two LSPR modes is demonstrated to activate either the on-edge or the in-plane active sites for plasmonic charge carrier-induced site-selective catalysis. Our findings uncover the presence as well as the mechanism of the anisotropic plasmon resonance in nonmetallic 2D nanomaterials and provide intriguing design principles for next-generation plasmonic nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助猪猪hero采纳,获得10
1秒前
2秒前
CipherSage应助海棠yiyi采纳,获得50
3秒前
Khr1stINK发布了新的文献求助10
3秒前
3秒前
脑洞疼应助卡卡采纳,获得10
3秒前
3秒前
Rrr发布了新的文献求助10
4秒前
科研通AI5应助zmy采纳,获得10
5秒前
William鉴哲发布了新的文献求助10
5秒前
情怀应助只道寻常采纳,获得10
6秒前
6秒前
cyy完成签到,获得积分20
6秒前
orixero应助小庄采纳,获得10
7秒前
8秒前
侦察兵发布了新的文献求助10
8秒前
司徒元瑶完成签到 ,获得积分10
8秒前
梓榆发布了新的文献求助10
8秒前
8秒前
sweetbearm应助通~采纳,获得10
8秒前
斯文败类应助成就映秋采纳,获得10
9秒前
123456完成签到,获得积分10
9秒前
9秒前
moonlin完成签到 ,获得积分10
9秒前
10秒前
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
12秒前
wanci应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
思源应助蟹黄堡不打折采纳,获得10
12秒前
Lily应助科研通管家采纳,获得40
12秒前
敬老院N号应助科研通管家采纳,获得30
12秒前
zzzq应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
皮皮完成签到 ,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794