Knowledge Graph Retrieval-Augmented Generation for LLM-based Recommendation

计算机科学 图形 情报检索 知识图 理论计算机科学
作者
Shijie Wang,Wenqi Fan,Yue Feng,Xinyu Ma,Shuaiqiang Wang,Dawei Yin
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.02226
摘要

Recommender systems have become increasingly vital in our daily lives, helping to alleviate the problem of information overload across various user-oriented online services. The emergence of Large Language Models (LLMs) has yielded remarkable achievements, demonstrating their potential for the development of next-generation recommender systems. Despite these advancements, LLM-based recommender systems face inherent limitations stemming from their LLM backbones, particularly issues of hallucinations and the lack of up-to-date and domain-specific knowledge. Recently, Retrieval-Augmented Generation (RAG) has garnered significant attention for addressing these limitations by leveraging external knowledge sources to enhance the understanding and generation of LLMs. However, vanilla RAG methods often introduce noise and neglect structural relationships in knowledge, limiting their effectiveness in LLM-based recommendations. To address these limitations, we propose to retrieve high-quality and up-to-date structure information from the knowledge graph (KG) to augment recommendations. Specifically, our approach develops a retrieval-augmented framework, termed K-RagRec, that facilitates the recommendation generation process by incorporating structure information from the external KG. Extensive experiments have been conducted to demonstrate the effectiveness of our proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11关注了科研通微信公众号
1秒前
天高任鸟飞完成签到,获得积分10
5秒前
K369发布了新的文献求助10
5秒前
7秒前
西瓜完成签到 ,获得积分10
7秒前
shaoyuan完成签到,获得积分10
8秒前
8秒前
小滕完成签到 ,获得积分10
9秒前
11秒前
12秒前
shaoyuan发布了新的文献求助10
13秒前
14秒前
14秒前
小二郎应助南风不竞采纳,获得10
15秒前
mf2002mf发布了新的文献求助10
16秒前
1111发布了新的文献求助10
16秒前
liu发布了新的文献求助10
16秒前
17秒前
小滕发布了新的文献求助10
20秒前
K369关注了科研通微信公众号
20秒前
21秒前
hu970关注了科研通微信公众号
21秒前
NexusExplorer应助ztayx采纳,获得10
22秒前
23秒前
江铭完成签到,获得积分10
24秒前
26秒前
碧蓝毛豆完成签到 ,获得积分10
26秒前
wang666发布了新的文献求助10
28秒前
可爱的函函应助zzz采纳,获得10
28秒前
RaynorHank完成签到,获得积分10
28秒前
31秒前
Yy发布了新的文献求助10
31秒前
orixero应助人机采纳,获得10
35秒前
11驳回了CodeCraft应助
35秒前
大个应助无心的土豆采纳,获得10
36秒前
37秒前
zjw发布了新的文献求助10
38秒前
38秒前
39秒前
zxy完成签到 ,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356590
求助须知:如何正确求助?哪些是违规求助? 2980182
关于积分的说明 8693388
捐赠科研通 2661758
什么是DOI,文献DOI怎么找? 1457368
科研通“疑难数据库(出版商)”最低求助积分说明 674761
邀请新用户注册赠送积分活动 665624