DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks

人类连接体项目 计算机科学 人工智能 连接体 机器学习 功能磁共振成像 动态功能连接 深度学习 图形 卷积神经网络 模式识别(心理学) 功能连接 神经科学 理论计算机科学 心理学
作者
Bishal Thapaliya,Robyn L. Miller,Jiayu Chen,Yu‐Ping Wang,Esra Akbaş,Ram P. Sapkota,Bhaskar Ray,Pranav Suresh,Santosh Ghimire,Vince D. Calhoun,Jingyu Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:101: 103462-103462 被引量:1
标识
DOI:10.1016/j.media.2025.103462
摘要

Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand. Our implementation can be found on https://github.com/bishalth01/DSAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wenpandaen发布了新的文献求助10
刚刚
刚刚
1秒前
helium完成签到,获得积分10
2秒前
容若发布了新的文献求助10
2秒前
xiaoyaoyou351完成签到,获得积分10
3秒前
3秒前
沐易发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
秋暝寒衣发布了新的文献求助10
5秒前
喜洋羊发布了新的文献求助10
6秒前
WendyWen发布了新的文献求助10
6秒前
hwezhu完成签到,获得积分10
6秒前
李健的小迷弟应助咕咕采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
Akim应助合适的落落采纳,获得10
9秒前
12完成签到,获得积分10
10秒前
10秒前
tuoqi发布了新的文献求助10
10秒前
trq1007完成签到,获得积分10
11秒前
lacey发布了新的文献求助10
12秒前
12秒前
星睿完成签到,获得积分10
12秒前
大个应助沉默寻凝采纳,获得20
12秒前
12秒前
13秒前
乐乐应助崔噔噔采纳,获得10
13秒前
Angelie发布了新的文献求助10
14秒前
Abi发布了新的文献求助10
14秒前
14秒前
aiming发布了新的文献求助10
14秒前
15秒前
15秒前
jinying发布了新的文献求助10
15秒前
健忘的老姆完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564065
求助须知:如何正确求助?哪些是违规求助? 3137276
关于积分的说明 9421653
捐赠科研通 2837658
什么是DOI,文献DOI怎么找? 1559942
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717215