Phishing Website Detection: An In‐Depth Investigation of Feature Selection and Deep Learning

网络钓鱼 计算机科学 机器学习 人工智能 随机森林 过度拟合 卷积神经网络 深度学习 特征选择 决策树 支持向量机 可扩展性 感知器 沙盒(软件开发) 数据挖掘 人工神经网络 互联网 万维网 数据库 软件工程
作者
Seyed Amin Mousavi,Mahdi Bahaghighat
出处
期刊:Expert Systems [Wiley]
卷期号:42 (3)
标识
DOI:10.1111/exsy.13824
摘要

ABSTRACT Cloud and fog computing technologies benefit from integrating AI‐driven phishing detection as it enhances security, scalability, real‐time reaction, and privacy. Nowadays, there is a noticeable rise in illegal activity taking place online. One of the illicit cybersecurity practices is phishing, in which hackers trick consumers by pretending to be authentic websites and spoofing them to obtain sensitive user information. Phishing attacks, regrettably, have increased dramatically in recent years, according to research. Machine learning (ML) and deep learning (DL) techniques have shown encouraging progress in thwarting these attacks. Consequently, we employed DL and ML techniques to identify phishing websites in this study. This article presents four scenarios in both ML and DL models. Two are proposed in ML, while the others are employed in DL. The outcomes of four scenarios were contrasted to determine which algorithm performed better at distinguishing between legal and illicit websites. Many popular ML techniques were used, including K‐nearest neighbour, random forest (RF), decision trees, and SVMs. PCA and Importance Features are implemented in both ML scenarios to find the best features. RF successfully reached an accuracy of 97.82% using the Importance Feature technique. However, the PCA method failed to improve the performance of ML algorithms. As a result of ML‐based scenarios, 98 features are selected for the final deep learning scenarios. In DL‐based scenarios, algorithm architectures are essential to avoid overfitting and bias due to various hyperparameters. Thus, in the third scenario, our aim focuses on DL architecture design. Multilayer perceptron and convolutional neural networks (CNNs) are employed to detect phishing websites. Finally, our proposed 1D CNN model, using stratified k‐fold cross‐validation, outperformed the classical ML algorithm, achieving 98.94% accuracy and 0.99 AUC‐ROC score in detecting phishing websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
1秒前
2秒前
科研通AI5应助黑猫采纳,获得10
2秒前
张凯茜发布了新的文献求助10
3秒前
共享精神应助000采纳,获得10
4秒前
天天快乐应助qing采纳,获得10
4秒前
AA发布了新的文献求助10
4秒前
斯文败类应助Miracle采纳,获得10
4秒前
刘恒超完成签到,获得积分20
5秒前
迷你的绿竹完成签到,获得积分20
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
ccc完成签到,获得积分10
7秒前
韩嘉玺发布了新的文献求助10
8秒前
9秒前
9秒前
爆米花应助顺心的老五采纳,获得10
9秒前
Limerencia完成签到,获得积分10
10秒前
外向渊思完成签到 ,获得积分10
10秒前
hcx完成签到 ,获得积分10
11秒前
Owen应助幽默眼神采纳,获得10
11秒前
大模型应助skevvecl采纳,获得10
11秒前
MTRQ完成签到,获得积分10
11秒前
天真安筠发布了新的文献求助10
12秒前
张凯茜完成签到,获得积分20
12秒前
zsr发布了新的文献求助10
13秒前
在水一方应助刘老师采纳,获得10
13秒前
14秒前
无奈青发布了新的文献求助10
14秒前
15秒前
时尚白凡完成签到 ,获得积分10
15秒前
小早完成签到,获得积分10
16秒前
CodeCraft应助不喝牛奶的猫采纳,获得10
16秒前
梓然完成签到,获得积分10
16秒前
16秒前
lan完成签到,获得积分10
17秒前
17秒前
Candice完成签到,获得积分10
17秒前
AY完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095