Phishing Website Detection: An In‐Depth Investigation of Feature Selection and Deep Learning

网络钓鱼 计算机科学 机器学习 人工智能 随机森林 过度拟合 卷积神经网络 深度学习 特征选择 决策树 支持向量机 可扩展性 感知器 沙盒(软件开发) 数据挖掘 人工神经网络 互联网 万维网 数据库 软件工程
作者
Seyed Amin Mousavi,Mahdi Bahaghighat
出处
期刊:Expert Systems [Wiley]
卷期号:42 (3)
标识
DOI:10.1111/exsy.13824
摘要

ABSTRACT Cloud and fog computing technologies benefit from integrating AI‐driven phishing detection as it enhances security, scalability, real‐time reaction, and privacy. Nowadays, there is a noticeable rise in illegal activity taking place online. One of the illicit cybersecurity practices is phishing, in which hackers trick consumers by pretending to be authentic websites and spoofing them to obtain sensitive user information. Phishing attacks, regrettably, have increased dramatically in recent years, according to research. Machine learning (ML) and deep learning (DL) techniques have shown encouraging progress in thwarting these attacks. Consequently, we employed DL and ML techniques to identify phishing websites in this study. This article presents four scenarios in both ML and DL models. Two are proposed in ML, while the others are employed in DL. The outcomes of four scenarios were contrasted to determine which algorithm performed better at distinguishing between legal and illicit websites. Many popular ML techniques were used, including K‐nearest neighbour, random forest (RF), decision trees, and SVMs. PCA and Importance Features are implemented in both ML scenarios to find the best features. RF successfully reached an accuracy of 97.82% using the Importance Feature technique. However, the PCA method failed to improve the performance of ML algorithms. As a result of ML‐based scenarios, 98 features are selected for the final deep learning scenarios. In DL‐based scenarios, algorithm architectures are essential to avoid overfitting and bias due to various hyperparameters. Thus, in the third scenario, our aim focuses on DL architecture design. Multilayer perceptron and convolutional neural networks (CNNs) are employed to detect phishing websites. Finally, our proposed 1D CNN model, using stratified k‐fold cross‐validation, outperformed the classical ML algorithm, achieving 98.94% accuracy and 0.99 AUC‐ROC score in detecting phishing websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
student完成签到,获得积分10
1秒前
恋雅颖月发布了新的文献求助10
1秒前
美丽如柏完成签到,获得积分20
2秒前
happystar应助ll采纳,获得10
3秒前
热心的白莲完成签到,获得积分10
4秒前
加减乘除发布了新的文献求助10
4秒前
4秒前
Owen应助wangy采纳,获得10
4秒前
5秒前
科研通AI2S应助赛博朋克采纳,获得10
5秒前
6秒前
7秒前
田様应助student采纳,获得10
8秒前
温洪玲完成签到,获得积分20
8秒前
领导范儿应助Wuwuwu采纳,获得10
8秒前
郭亮发布了新的文献求助10
10秒前
11秒前
动听千秋完成签到 ,获得积分10
12秒前
欣慰薯片发布了新的文献求助10
12秒前
hzwdm1发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
JavedAli完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578224
求助须知:如何正确求助?哪些是违规求助? 3997171
关于积分的说明 12374791
捐赠科研通 3671317
什么是DOI,文献DOI怎么找? 2023340
邀请新用户注册赠送积分活动 1057301
科研通“疑难数据库(出版商)”最低求助积分说明 944261