Phishing Website Detection: An In‐Depth Investigation of Feature Selection and Deep Learning

网络钓鱼 计算机科学 机器学习 人工智能 随机森林 过度拟合 卷积神经网络 深度学习 特征选择 决策树 支持向量机 可扩展性 感知器 沙盒(软件开发) 数据挖掘 人工神经网络 互联网 万维网 数据库 软件工程
作者
Seyed Amin Mousavi,Mahdi Bahaghighat
出处
期刊:Expert Systems [Wiley]
卷期号:42 (3)
标识
DOI:10.1111/exsy.13824
摘要

ABSTRACT Cloud and fog computing technologies benefit from integrating AI‐driven phishing detection as it enhances security, scalability, real‐time reaction, and privacy. Nowadays, there is a noticeable rise in illegal activity taking place online. One of the illicit cybersecurity practices is phishing, in which hackers trick consumers by pretending to be authentic websites and spoofing them to obtain sensitive user information. Phishing attacks, regrettably, have increased dramatically in recent years, according to research. Machine learning (ML) and deep learning (DL) techniques have shown encouraging progress in thwarting these attacks. Consequently, we employed DL and ML techniques to identify phishing websites in this study. This article presents four scenarios in both ML and DL models. Two are proposed in ML, while the others are employed in DL. The outcomes of four scenarios were contrasted to determine which algorithm performed better at distinguishing between legal and illicit websites. Many popular ML techniques were used, including K‐nearest neighbour, random forest (RF), decision trees, and SVMs. PCA and Importance Features are implemented in both ML scenarios to find the best features. RF successfully reached an accuracy of 97.82% using the Importance Feature technique. However, the PCA method failed to improve the performance of ML algorithms. As a result of ML‐based scenarios, 98 features are selected for the final deep learning scenarios. In DL‐based scenarios, algorithm architectures are essential to avoid overfitting and bias due to various hyperparameters. Thus, in the third scenario, our aim focuses on DL architecture design. Multilayer perceptron and convolutional neural networks (CNNs) are employed to detect phishing websites. Finally, our proposed 1D CNN model, using stratified k‐fold cross‐validation, outperformed the classical ML algorithm, achieving 98.94% accuracy and 0.99 AUC‐ROC score in detecting phishing websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fcyyc发布了新的文献求助10
1秒前
Xin完成签到,获得积分10
1秒前
2秒前
聪慧的伟完成签到,获得积分10
2秒前
玉桂兔完成签到,获得积分10
3秒前
漂亮的人生完成签到,获得积分10
3秒前
陈谨诺完成签到,获得积分10
3秒前
去你丫的随机昵称完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
白白完成签到,获得积分10
3秒前
英姑应助zlp采纳,获得10
4秒前
Xin发布了新的文献求助10
4秒前
5秒前
hhhblabla应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小陈完成签到,获得积分10
5秒前
研友_n0kYwL发布了新的文献求助10
5秒前
6秒前
7秒前
SS发布了新的文献求助10
7秒前
chen发布了新的文献求助10
9秒前
ZJ发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
快乐科研发布了新的文献求助30
13秒前
星辰大海应助SS采纳,获得10
14秒前
拼搏山槐发布了新的文献求助10
14秒前
小张发布了新的文献求助10
14秒前
研友_n0kYwL完成签到,获得积分10
14秒前
15秒前
小沈完成签到,获得积分10
15秒前
肉胖胖肉完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512588
求助须知:如何正确求助?哪些是违规求助? 3095007
关于积分的说明 9225655
捐赠科研通 2789852
什么是DOI,文献DOI怎么找? 1530910
邀请新用户注册赠送积分活动 711166
科研通“疑难数据库(出版商)”最低求助积分说明 706626