Phishing Website Detection: An In‐Depth Investigation of Feature Selection and Deep Learning

网络钓鱼 计算机科学 机器学习 人工智能 随机森林 过度拟合 卷积神经网络 深度学习 特征选择 决策树 支持向量机 可扩展性 感知器 沙盒(软件开发) 数据挖掘 人工神经网络 互联网 万维网 数据库 软件工程
作者
Seyed Amin Mousavi,Mahdi Bahaghighat
出处
期刊:Expert Systems [Wiley]
卷期号:42 (3)
标识
DOI:10.1111/exsy.13824
摘要

ABSTRACT Cloud and fog computing technologies benefit from integrating AI‐driven phishing detection as it enhances security, scalability, real‐time reaction, and privacy. Nowadays, there is a noticeable rise in illegal activity taking place online. One of the illicit cybersecurity practices is phishing, in which hackers trick consumers by pretending to be authentic websites and spoofing them to obtain sensitive user information. Phishing attacks, regrettably, have increased dramatically in recent years, according to research. Machine learning (ML) and deep learning (DL) techniques have shown encouraging progress in thwarting these attacks. Consequently, we employed DL and ML techniques to identify phishing websites in this study. This article presents four scenarios in both ML and DL models. Two are proposed in ML, while the others are employed in DL. The outcomes of four scenarios were contrasted to determine which algorithm performed better at distinguishing between legal and illicit websites. Many popular ML techniques were used, including K‐nearest neighbour, random forest (RF), decision trees, and SVMs. PCA and Importance Features are implemented in both ML scenarios to find the best features. RF successfully reached an accuracy of 97.82% using the Importance Feature technique. However, the PCA method failed to improve the performance of ML algorithms. As a result of ML‐based scenarios, 98 features are selected for the final deep learning scenarios. In DL‐based scenarios, algorithm architectures are essential to avoid overfitting and bias due to various hyperparameters. Thus, in the third scenario, our aim focuses on DL architecture design. Multilayer perceptron and convolutional neural networks (CNNs) are employed to detect phishing websites. Finally, our proposed 1D CNN model, using stratified k‐fold cross‐validation, outperformed the classical ML algorithm, achieving 98.94% accuracy and 0.99 AUC‐ROC score in detecting phishing websites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助123456采纳,获得10
1秒前
YY发布了新的文献求助10
3秒前
华仔应助琳毓采纳,获得10
3秒前
傲娇的婷发布了新的文献求助10
4秒前
ylyla完成签到,获得积分10
4秒前
flymove发布了新的文献求助10
4秒前
猪大户完成签到 ,获得积分10
5秒前
5秒前
义气莫茗完成签到,获得积分10
6秒前
斯文败类应助茹茹采纳,获得10
6秒前
cfy完成签到,获得积分10
7秒前
情怀应助zc98采纳,获得10
9秒前
科目三应助rong采纳,获得10
9秒前
chengli完成签到,获得积分10
10秒前
10秒前
Olivia发布了新的文献求助10
10秒前
大力芷容发布了新的文献求助10
10秒前
烟花应助fugdu采纳,获得10
10秒前
11秒前
Zxx应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
卡卡西应助科研通管家采纳,获得30
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
继往开来应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
yznfly应助科研通管家采纳,获得30
13秒前
stuffmatter应助科研通管家采纳,获得200
13秒前
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959007
求助须知:如何正确求助?哪些是违规求助? 3505322
关于积分的说明 11123366
捐赠科研通 3236970
什么是DOI,文献DOI怎么找? 1788969
邀请新用户注册赠送积分活动 871459
科研通“疑难数据库(出版商)”最低求助积分说明 802805