Discovery of Brain-Penetrative Negative Allosteric Modulators of NMDA Receptors Using FEP-Guided Structure Optimization and Membrane Permeability Prediction

变构调节 NMDA受体 化学 磁导率 受体 膜透性 神经科学 生物物理学 生物 生物化学
作者
Fabao Zhao,Liyang Jiang,Jieying Xie,Na Liu,Zhen Gao,Yue Yang,Yu Wang,Boshi Huang,Dongwei Kang,Peng Zhan,Feng Yi,Xinyong Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01636
摘要

N-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by N-(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their in vivo characterization and further advancement. In this study, we reported a series of 2-((5-(phemylamino)-1,3,4-thiadiazol-2-yl)thio)-N-(cyclohexylmethyl)acetamide derivatives, achieved through a structure-guided optimization strategy using free energy perturbation (FEP) and BBB permeability estimation. Through systematic exploration of various phenyl substitutions, compound 1f emerged as a standout compound, demonstrating substantially enhanced inhibitory activity compared with the lead compound TCN-213. Compound 1f not only displayed satisfactory BBB permeability but also showed antidepressant-like potency in the hydrocortisone-induced zebrafish depression-like model. All results position it as a promising candidate for developing innovative therapeutics for NMDA receptor-related disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MengM完成签到,获得积分10
刚刚
1秒前
2秒前
zcg发布了新的文献求助10
2秒前
2秒前
77完成签到,获得积分10
3秒前
沉默的凝云完成签到,获得积分20
3秒前
ZORA完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
hezi发布了新的文献求助10
6秒前
zhenya完成签到,获得积分10
7秒前
独特乘云发布了新的文献求助10
7秒前
共享精神应助平水采纳,获得10
8秒前
嘿嘿嘿发布了新的文献求助10
8秒前
9秒前
10秒前
Orange应助老迟到的可兰采纳,获得10
10秒前
10秒前
顺心牛排完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
光亮远航完成签到 ,获得积分10
12秒前
12秒前
我还不困发布了新的文献求助50
13秒前
13秒前
Triloka发布了新的文献求助10
13秒前
锡昱完成签到,获得积分10
13秒前
在水一方应助勤恳水风采纳,获得10
13秒前
青一发布了新的文献求助10
14秒前
Alec应助niyl采纳,获得20
14秒前
CY发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
梨梨发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731873
求助须知:如何正确求助?哪些是违规求助? 3276282
关于积分的说明 9996136
捐赠科研通 2991775
什么是DOI,文献DOI怎么找? 1641771
邀请新用户注册赠送积分活动 779986
科研通“疑难数据库(出版商)”最低求助积分说明 748611