Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients

医学 放化疗 结直肠癌 无线电技术 新辅助治疗 回顾性队列研究 队列 围手术期 阶段(地层学) 磁共振成像 放射科 肿瘤科 内科学 癌症 人工智能 计算机科学 古生物学 乳腺癌 生物
作者
Xuan Wu,Jinyong Wang,Chao Chen,Weimin Cai,Yu Guo,Kun Guo,Yongxian Chen,Yubo Shi,Junkai Chen,Xinran Lin,Xizi Jiang
出处
期刊:Academic Radiology [Elsevier]
被引量:3
标识
DOI:10.1016/j.acra.2024.12.049
摘要

The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得30
刚刚
Ava应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
乙予安应助科研通管家采纳,获得20
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
lily应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
选波发布了新的文献求助10
2秒前
3秒前
3秒前
Ava应助霸道恒天采纳,获得10
3秒前
科研通AI6应助霸道恒天采纳,获得10
3秒前
传奇3应助霸道恒天采纳,获得10
3秒前
科研通AI6应助霸道恒天采纳,获得10
3秒前
Lucas应助霸道恒天采纳,获得10
3秒前
CipherSage应助霸道恒天采纳,获得10
4秒前
慕青应助霸道恒天采纳,获得10
4秒前
赘婿应助霸道恒天采纳,获得10
4秒前
英姑应助霸道恒天采纳,获得10
4秒前
延胡索发布了新的文献求助10
4秒前
4秒前
kckckckckc完成签到 ,获得积分10
5秒前
Owen应助忧郁寻冬采纳,获得10
6秒前
热心玉兰发布了新的文献求助10
7秒前
割牙龈肉发布了新的文献求助10
8秒前
李李李发布了新的文献求助10
9秒前
浮游应助anwen采纳,获得10
10秒前
斯文败类应助壮壮采纳,获得10
10秒前
Rain应助Wang采纳,获得10
12秒前
13秒前
脑洞疼应助开放青旋采纳,获得30
13秒前
Lucas应助长情胡萝卜采纳,获得30
14秒前
热心玉兰完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336