Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients

医学 放化疗 结直肠癌 无线电技术 新辅助治疗 回顾性队列研究 队列 围手术期 阶段(地层学) 磁共振成像 放射科 肿瘤科 内科学 癌症 人工智能 计算机科学 乳腺癌 古生物学 生物
作者
Xuan Wu,Jinyong Wang,Chao Chen,Weimin Cai,Yu Guo,Kun Guo,Yongxian Chen,Yubo Shi,Junkai Chen,Xinran Lin,Xizi Jiang
出处
期刊:Academic Radiology [Elsevier]
标识
DOI:10.1016/j.acra.2024.12.049
摘要

The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只A不B应助科研通管家采纳,获得30
刚刚
刚刚
SYanan完成签到 ,获得积分10
1秒前
Owen应助大方嵩采纳,获得10
1秒前
2秒前
2秒前
2秒前
耍酷花卷发布了新的文献求助10
2秒前
孟陬十一完成签到,获得积分10
3秒前
3秒前
搞怪的凡蕾完成签到,获得积分10
4秒前
5秒前
5秒前
万能图书馆应助刘星星采纳,获得10
6秒前
Ting完成签到 ,获得积分10
6秒前
6秒前
SciGPT应助希夷采纳,获得10
6秒前
6秒前
调皮黑猫完成签到,获得积分10
6秒前
6秒前
Sunny完成签到,获得积分10
6秒前
7秒前
应作如是观完成签到,获得积分10
7秒前
聪聪great完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
晓军驳回了1ssd应助
7秒前
7秒前
啊哈哈哈完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
jxcandice发布了新的文献求助10
9秒前
旺德福完成签到 ,获得积分10
9秒前
kevin完成签到,获得积分10
9秒前
naomi完成签到 ,获得积分10
9秒前
桐桐应助玉崟采纳,获得10
10秒前
慕青应助地狱跳跳虎采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762