亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients

医学 放化疗 结直肠癌 无线电技术 新辅助治疗 回顾性队列研究 队列 围手术期 阶段(地层学) 磁共振成像 放射科 肿瘤科 内科学 癌症 人工智能 计算机科学 古生物学 乳腺癌 生物
作者
Xuan Wu,Jinyong Wang,Chao Chen,Weimin Cai,Yu Guo,Kun Guo,Yongxian Chen,Yubo Shi,Junkai Chen,Xinran Lin,Xizi Jiang
出处
期刊:Academic Radiology [Elsevier]
标识
DOI:10.1016/j.acra.2024.12.049
摘要

The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷茫的一代完成签到,获得积分10
9秒前
20秒前
直率香寒完成签到,获得积分10
32秒前
葱饼完成签到 ,获得积分10
48秒前
张立人发布了新的文献求助10
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
完美芹发布了新的文献求助10
1分钟前
Benhnhk21完成签到,获得积分10
1分钟前
火星完成签到 ,获得积分10
2分钟前
souther完成签到,获得积分0
2分钟前
生姜批发刘哥完成签到 ,获得积分10
2分钟前
2分钟前
小鹿发布了新的文献求助10
2分钟前
小鹿完成签到,获得积分10
2分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
caca完成签到,获得积分10
4分钟前
bkagyin应助完美芹采纳,获得10
4分钟前
高高的天亦完成签到 ,获得积分10
4分钟前
4分钟前
ding应助契合采纳,获得10
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
Ava应助张立人采纳,获得10
5分钟前
5分钟前
契合发布了新的文献求助10
5分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346841
求助须知:如何正确求助?哪些是违规求助? 2973392
关于积分的说明 8659208
捐赠科研通 2653886
什么是DOI,文献DOI怎么找? 1453360
科研通“疑难数据库(出版商)”最低求助积分说明 672885
邀请新用户注册赠送积分活动 662830