Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients

医学 放化疗 结直肠癌 无线电技术 新辅助治疗 回顾性队列研究 队列 围手术期 阶段(地层学) 磁共振成像 放射科 肿瘤科 内科学 癌症 人工智能 计算机科学 乳腺癌 古生物学 生物
作者
Xuan Wu,Jinyong Wang,Chao Chen,Weimin Cai,Yu Guo,Kun Guo,Yongxian Chen,Yubo Shi,Junkai Chen,Xinran Lin,Xizi Jiang
出处
期刊:Academic Radiology [Elsevier BV]
标识
DOI:10.1016/j.acra.2024.12.049
摘要

The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop and validate a model that integrates deep learning and sub-regional radiomics from MRI imaging to predict pathological complete response (pCR) in patients with LARC. We retrospectively enrolled 768 eligible participants from three independent hospitals who had received neoadjuvant chemoradiotherapy followed by radical surgery. Pretreatment pelvic MRI scans (T2-weighted), were collected for annotation and feature extraction. The K-means approach was used to segment the tumor into sub-regions. Radiomics and deep learning features were extracted by the Pyradiomics and 3D ResNet50, respectively. The predictive models were developed using the radiomics, sub-regional radiomics, and deep learning features with the machine learning algorithm in training cohort, and then validated in the external tests. The models' performance was assessed using various metrics, including the area under the curve (AUC), decision curve analysis, Kaplan-Meier survival analysis. We constructed a combined model, named SRADL, which includes deep learning with sub-regional radiomics signatures, enabling precise prediction of pCR in LARC patients. SRADL had satisfactory performance for the prediction of pCR in the training cohort (AUC 0.925 [95% CI 0.894 to 0.948]), and in test 1 (AUC 0.915 [95% CI 0.869 to 0.949]) and in test 2 (AUC 0.902 [95% CI 0.846 to 0.945]). By employing optimal threshold of 0.486, the predicted pCR group had longer survival compared to predicted non-pCR group across three cohorts. SRADL also outperformed other single-modality prediction models. The novel SRADL, which integrates deep learning with sub-regional signatures, showed high accuracy and robustness in predicting pCR to neoadjuvant chemoradiotherapy using pretreatment MRI images, making it a promising tool for the personalized management of LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助和春住采纳,获得10
刚刚
zxd完成签到,获得积分10
刚刚
orixero应助jhb采纳,获得10
刚刚
1秒前
sjw525完成签到,获得积分10
1秒前
2秒前
隐形曼青应助琉璃采纳,获得10
2秒前
若风完成签到,获得积分10
3秒前
3秒前
未知给未知的求助进行了留言
3秒前
君克渡发布了新的文献求助10
3秒前
ding应助冷傲迎梦采纳,获得10
3秒前
迅速向日葵应助零度空间采纳,获得10
4秒前
领导范儿应助南风采纳,获得10
4秒前
踏实寄松完成签到,获得积分20
4秒前
顾暖完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
温暖的数据线完成签到,获得积分10
5秒前
5秒前
慧灰huihui完成签到,获得积分10
6秒前
yyybxqmz发布了新的文献求助10
6秒前
future发布了新的文献求助10
6秒前
傻傻的念瑶完成签到 ,获得积分10
6秒前
椰汁味完成签到,获得积分10
6秒前
忐忑的雪晴完成签到,获得积分10
6秒前
baibaibai完成签到,获得积分10
6秒前
aa给aa的求助进行了留言
7秒前
迅速向日葵应助Chris采纳,获得10
7秒前
BESIDESBKPP完成签到,获得积分10
7秒前
jjwen完成签到 ,获得积分10
8秒前
微笑诗柳发布了新的文献求助10
9秒前
9秒前
9秒前
崔崔完成签到,获得积分10
10秒前
10秒前
失眠的雅琴完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479