HGSFusion: Radar-Camera Fusion with Hybrid Generation and Synchronization for 3D Object Detection

计算机视觉 计算机科学 人工智能 同步(交流) 对象(语法) 融合 雷达 目标检测 实时计算 遥感 地理 电信 模式识别(心理学) 语言学 频道(广播) 哲学
作者
Zijian Gu,Jianwei Ma,Yan Huang,Honghao Wei,Zhanye Chen,Hui Zhang,Wei Hong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.11489
摘要

Millimeter-wave radar plays a vital role in 3D object detection for autonomous driving due to its all-weather and all-lighting-condition capabilities for perception. However, radar point clouds suffer from pronounced sparsity and unavoidable angle estimation errors. To address these limitations, incorporating a camera may partially help mitigate the shortcomings. Nevertheless, the direct fusion of radar and camera data can lead to negative or even opposite effects due to the lack of depth information in images and low-quality image features under adverse lighting conditions. Hence, in this paper, we present the radar-camera fusion network with Hybrid Generation and Synchronization (HGSFusion), designed to better fuse radar potentials and image features for 3D object detection. Specifically, we propose the Radar Hybrid Generation Module (RHGM), which fully considers the Direction-Of-Arrival (DOA) estimation errors in radar signal processing. This module generates denser radar points through different Probability Density Functions (PDFs) with the assistance of semantic information. Meanwhile, we introduce the Dual Sync Module (DSM), comprising spatial sync and modality sync, to enhance image features with radar positional information and facilitate the fusion of distinct characteristics in different modalities. Extensive experiments demonstrate the effectiveness of our approach, outperforming the state-of-the-art methods in the VoD and TJ4DRadSet datasets by $6.53\%$ and $2.03\%$ in RoI AP and BEV AP, respectively. The code is available at https://github.com/garfield-cpp/HGSFusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿靖完成签到,获得积分10
1秒前
666完成签到,获得积分20
2秒前
哈哈哈完成签到 ,获得积分10
3秒前
7秒前
666发布了新的文献求助10
7秒前
善学以致用应助蓝胖子采纳,获得10
10秒前
冷静完成签到,获得积分10
12秒前
Selonfer完成签到,获得积分10
12秒前
Adelinelili发布了新的文献求助30
13秒前
科研通AI6.1应助XS_QI采纳,获得10
14秒前
18秒前
春和小椰发布了新的文献求助10
22秒前
义气思雁完成签到 ,获得积分10
24秒前
Owen应助杨昭采纳,获得10
25秒前
30秒前
35秒前
桐桐应助大方鲂采纳,获得10
35秒前
烟花应助Tree_QD采纳,获得10
36秒前
37秒前
金闪闪完成签到 ,获得积分10
38秒前
2i完成签到 ,获得积分10
39秒前
mw发布了新的文献求助10
39秒前
与岁年完成签到 ,获得积分10
39秒前
JQB完成签到,获得积分10
41秒前
XS_QI发布了新的文献求助10
42秒前
42秒前
敬业乐群发布了新的文献求助10
43秒前
朴实颤完成签到,获得积分10
46秒前
48秒前
49秒前
复杂汝燕完成签到,获得积分10
49秒前
49秒前
小甜完成签到 ,获得积分10
55秒前
大方鲂发布了新的文献求助10
55秒前
56秒前
56秒前
hyishu完成签到,获得积分10
56秒前
yanxi完成签到 ,获得积分10
56秒前
budingman发布了新的文献求助10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847516
求助须知:如何正确求助?哪些是违规求助? 6226943
关于积分的说明 15620380
捐赠科研通 4964176
什么是DOI,文献DOI怎么找? 2676458
邀请新用户注册赠送积分活动 1621027
关于科研通互助平台的介绍 1576958