HGSFusion: Radar-Camera Fusion with Hybrid Generation and Synchronization for 3D Object Detection

计算机视觉 计算机科学 人工智能 同步(交流) 对象(语法) 融合 雷达 目标检测 实时计算 遥感 地理 电信 模式识别(心理学) 语言学 频道(广播) 哲学
作者
Zijian Gu,Jianwei Ma,Yan Huang,Honghao Wei,Zhanye Chen,Hui Zhang,Wei Hong
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2412.11489
摘要

Millimeter-wave radar plays a vital role in 3D object detection for autonomous driving due to its all-weather and all-lighting-condition capabilities for perception. However, radar point clouds suffer from pronounced sparsity and unavoidable angle estimation errors. To address these limitations, incorporating a camera may partially help mitigate the shortcomings. Nevertheless, the direct fusion of radar and camera data can lead to negative or even opposite effects due to the lack of depth information in images and low-quality image features under adverse lighting conditions. Hence, in this paper, we present the radar-camera fusion network with Hybrid Generation and Synchronization (HGSFusion), designed to better fuse radar potentials and image features for 3D object detection. Specifically, we propose the Radar Hybrid Generation Module (RHGM), which fully considers the Direction-Of-Arrival (DOA) estimation errors in radar signal processing. This module generates denser radar points through different Probability Density Functions (PDFs) with the assistance of semantic information. Meanwhile, we introduce the Dual Sync Module (DSM), comprising spatial sync and modality sync, to enhance image features with radar positional information and facilitate the fusion of distinct characteristics in different modalities. Extensive experiments demonstrate the effectiveness of our approach, outperforming the state-of-the-art methods in the VoD and TJ4DRadSet datasets by $6.53\%$ and $2.03\%$ in RoI AP and BEV AP, respectively. The code is available at https://github.com/garfield-cpp/HGSFusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
andy发布了新的文献求助10
3秒前
Cc完成签到 ,获得积分10
3秒前
fff发布了新的文献求助10
3秒前
科研通AI5应助超级灰狼采纳,获得10
5秒前
张浩威发布了新的文献求助10
6秒前
隐形曼青应助CSHAN采纳,获得10
7秒前
10秒前
WUHUDASM应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
Orange应助科研通管家采纳,获得30
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
WUHUDASM应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得30
13秒前
WUHUDASM应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
14秒前
CodeCraft应助lll采纳,获得10
15秒前
共享精神应助敏感初露采纳,获得10
15秒前
桐桐应助WUHUDASM采纳,获得10
15秒前
科研通AI5应助阮绝悟采纳,获得10
17秒前
11发布了新的文献求助10
17秒前
菜菜完成签到 ,获得积分10
18秒前
ringleung发布了新的文献求助10
18秒前
领导范儿应助444采纳,获得10
19秒前
hhhh_xt完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助shaojiaikeyan采纳,获得10
22秒前
22秒前
22秒前
叛逆美少女完成签到 ,获得积分10
23秒前
23秒前
enoch完成签到 ,获得积分10
24秒前
怡然嚣完成签到,获得积分10
24秒前
zho发布了新的文献求助10
25秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479914
求助须知:如何正确求助?哪些是违规求助? 3070485
关于积分的说明 9117746
捐赠科研通 2762160
什么是DOI,文献DOI怎么找? 1515675
邀请新用户注册赠送积分活动 701133
科研通“疑难数据库(出版商)”最低求助积分说明 700052