Abstract: The incidence of inflammatory diseases, including infections, autoimmune disorders, and tumors, is consistently increasing year by year, posing a significant and growing threat to human health on a global scale. Recent research has indicated that RNA acetylation modification, a specific type of post-transcriptional modification, may play a critical role in the pathogenesis of these diseases. Among the various mechanisms of RNA modification, N-acetyltransferase 10 (NAT10) has been identified as the sole cytidine acetyltransferase in eukaryotes. NAT10 is responsible for acetylating mRNA cytosine, which leads to the formation of N4-acetylcytidine (ac4C), a modification that subsequently influences mRNA stability and translation efficiency. Despite these insights, the specific roles and underlying mechanisms by which RNA acetylation contributes to the onset and progression of inflammatory diseases remain largely unclear. This review aimed to elucidate the alterations in NAT10 expression, the modifications it induces in target genes, and its overall contribution to the pathogenesis of various inflammatory conditions. It has been observed that NAT10 expression tends to increase in most inflammatory conditions, thereby affecting the expression and function of target genes through the formation of ac4C. Furthermore, inhibitors targeting NAT10 present promising therapeutic avenues for treating inflammatory diseases by selectively blocking NAT10 activity, thereby preventing the modification of target genes and suppressing immune cell activation and inflammatory responses. This potential for therapeutic intervention underscores the critical importance of further research on NAT10's role in inflammatory disease pathogenesis, as understanding these mechanisms could lead to significant advancements in treatment strategies, potentially transforming the therapeutic landscape for these conditions.