Deep Learning Model for Predicting Immunotherapy Response in Advanced Non−Small Cell Lung Cancer

医学 内科学 肺癌 肿瘤科 队列 免疫疗法 队列研究 癌症
作者
Mehrdad Rakaee,Masoud Tafavvoghi,Biagio Ricciuti,Joao V. Alessi,Alessio Cortellini,Fabrizio Citarella,Lorenzo Nibid,Giuseppe Perrone,Elio Adib,Claudia Angela Maria Fulgenzi,Cássio Murilo Trovo Hidalgo Filho,Alessandro Di Federico,Falah Jabar,Sayed M.S. Hashemi,Ilias Houda,Elin Richardsen,Lill‐Tove Busund,Tom Dønnem,Idris Bahce,David J. Pinato
出处
期刊:JAMA Oncology [American Medical Association]
被引量:7
标识
DOI:10.1001/jamaoncol.2024.5356
摘要

Importance Only a small fraction of patients with advanced non−small cell lung cancer (NSCLC) respond to immune checkpoint inhibitor (ICI) treatment. For optimal personalized NSCLC care, it is imperative to identify patients who are most likely to benefit from immunotherapy. Objective To develop a supervised deep learning−based ICI response prediction method; evaluate its performance alongside other known predictive biomarkers; and assess its association with clinical outcomes in patients with advanced NSCLC. Design, Setting, and Participants This multicenter cohort study developed and independently validated a deep learning−based response stratification model for predicting ICI treatment outcome in patients with advanced NSCLC from whole slide hematoxylin and eosin–stained images. Images for model development and validation were obtained from 1 participating center in the US and 3 in the European Union (EU) from August 2014 to December 2022. Data analyses were performed from September 2022 to May 2024. Exposure Monotherapy with ICIs. Main Outcomes and Measures Model performance measured by clinical end points and objective response rate (ORR) differentiation power vs other predictive biomarkers, ie, programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs). Results A total of 295 581 image tiles from 958 patients (mean [SD] age, 66.0 [10.6] years; 456 [48%] females and 502 [52%] males) treated with ICI for NSCLC were included in the analysis. The US-based development cohort consisted of 614 patients with median (IQR) follow-up time of 54.5 (38.2-68.1) months, and the EU-based validation cohort, 344 patients with 43.3 (27.4-53.9) months of follow-up. The ORR to ICI was 26% in the developmental cohort and 28% in the validation cohort. The deep learning model’s area under the receiver operating characteristic curve (AUC) for ORR was 0.75 (95% CI, 0.64-0.85) in the internal test set and 0.66 (95% CI, 0.60-0.72) in the validation cohort. In a multivariable analysis, the deep learning model’s score was an independent predictor of ICI response in the validation cohort for both progression-free (hazard ratio, 0.56; 95% CI, 0.42-0.76; P < .001) and overall survival (hazard ratio, 0.53; 95% CI, 0.39-0.73; P < .001). The tuned deep learning model achieved a higher AUC than TMB, TILs, and PD-L1 in the internal set; in the validation cohort, it was superior to TILs and comparable with PD-L1 (AUC, 0.67; 95% CI, 0.60-0.74), with a 10-percentage point improvement in specificity. In the validation cohort, combining the deep learning model with PD-L1 scores achieved an AUC of 0.70 (95% CI, 0.63-0.76), outperforming either marker alone, with a response rate of 51% compared to 41% for PD-L1 (≥50%) alone. Conclusions and Relevance The findings of this cohort study demonstrate a strong and independent deep learning−based feature associated with ICI response in patients with NSCLC across various cohorts. Clinical use of this deep learning model could refine treatment precision and better identify patients who are likely to benefit from ICI for treatment of advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李琛完成签到,获得积分10
刚刚
libe完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
谦让成协发布了新的文献求助20
1秒前
2秒前
3秒前
量子星尘发布了新的文献求助100
3秒前
burninhell完成签到,获得积分10
4秒前
4秒前
充电宝应助小商采纳,获得10
4秒前
LL发布了新的文献求助10
5秒前
PC发布了新的文献求助10
5秒前
雨霧雲完成签到,获得积分10
5秒前
坚定龙猫完成签到,获得积分10
5秒前
睡睡完成签到,获得积分10
7秒前
courage发布了新的文献求助10
7秒前
落寞平蝶完成签到,获得积分20
7秒前
yangya完成签到,获得积分10
7秒前
翁雁丝完成签到 ,获得积分10
7秒前
7秒前
8秒前
啊TiP完成签到,获得积分0
9秒前
lswhyr发布了新的文献求助20
9秒前
9秒前
CQ发布了新的文献求助10
9秒前
橙橙橙完成签到,获得积分10
10秒前
顾矜应助小狐狸采纳,获得10
10秒前
Kidmuse完成签到,获得积分10
11秒前
wuhuhuhu发布了新的文献求助10
11秒前
lijianguo完成签到,获得积分10
13秒前
13秒前
小刘发布了新的文献求助10
14秒前
nandiaozhimu完成签到,获得积分10
14秒前
14秒前
WGOIST完成签到,获得积分10
16秒前
赘婿应助nandiaozhimu采纳,获得10
16秒前
HUCAI完成签到,获得积分10
17秒前
细心灭龙发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960243
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129837
捐赠科研通 3238572
什么是DOI,文献DOI怎么找? 1789819
邀请新用户注册赠送积分活动 871927
科研通“疑难数据库(出版商)”最低求助积分说明 803099