亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Model for Predicting Immunotherapy Response in Advanced Non−Small Cell Lung Cancer

医学 内科学 肺癌 肿瘤科 队列 免疫疗法 队列研究 癌症
作者
Mehrdad Rakaee,Masoud Tafavvoghi,Biagio Ricciuti,Joao V. Alessi,Alessio Cortellini,Fabrizio Citarella,Lorenzo Nibid,Giuseppe Perrone,Elio Adib,Claudia Angela Maria Fulgenzi,Cássio Murilo Trovo Hidalgo Filho,Alessandro Di Federico,Falah Jabar,Sayed M.S. Hashemi,Ilias Houda,Elin Richardsen,Lill‐Tove Busund,Tom Dønnem,Idris Bahce,David J. Pinato,Åslaug Helland,Lynette M. Sholl,Mark M. Awad,David J. Kwiatkowski
出处
期刊:JAMA Oncology [American Medical Association]
标识
DOI:10.1001/jamaoncol.2024.5356
摘要

Importance Only a small fraction of patients with advanced non−small cell lung cancer (NSCLC) respond to immune checkpoint inhibitor (ICI) treatment. For optimal personalized NSCLC care, it is imperative to identify patients who are most likely to benefit from immunotherapy. Objective To develop a supervised deep learning−based ICI response prediction method; evaluate its performance alongside other known predictive biomarkers; and assess its association with clinical outcomes in patients with advanced NSCLC. Design, Setting, and Participants This multicenter cohort study developed and independently validated a deep learning−based response stratification model for predicting ICI treatment outcome in patients with advanced NSCLC from whole slide hematoxylin and eosin–stained images. Images for model development and validation were obtained from 1 participating center in the US and 3 in the European Union (EU) from August 2014 to December 2022. Data analyses were performed from September 2022 to May 2024. Exposure Monotherapy with ICIs. Main Outcomes and Measures Model performance measured by clinical end points and objective response rate (ORR) differentiation power vs other predictive biomarkers, ie, programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs). Results A total of 295 581 image tiles from 958 patients (mean [SD] age, 66.0 [10.6] years; 456 [48%] females and 502 [52%] males) treated with ICI for NSCLC were included in the analysis. The US-based development cohort consisted of 614 patients with median (IQR) follow-up time of 54.5 (38.2-68.1) months, and the EU-based validation cohort, 344 patients with 43.3 (27.4-53.9) months of follow-up. The ORR to ICI was 26% in the developmental cohort and 28% in the validation cohort. The deep learning model’s area under the receiver operating characteristic curve (AUC) for ORR was 0.75 (95% CI, 0.64-0.85) in the internal test set and 0.66 (95% CI, 0.60-0.72) in the validation cohort. In a multivariable analysis, the deep learning model’s score was an independent predictor of ICI response in the validation cohort for both progression-free (hazard ratio, 0.56; 95% CI, 0.42-0.76; P < .001) and overall survival (hazard ratio, 0.53; 95% CI, 0.39-0.73; P < .001). The tuned deep learning model achieved a higher AUC than TMB, TILs, and PD-L1 in the internal set; in the validation cohort, it was superior to TILs and comparable with PD-L1 (AUC, 0.67; 95% CI, 0.60-0.74), with a 10-percentage point improvement in specificity. In the validation cohort, combining the deep learning model with PD-L1 scores achieved an AUC of 0.70 (95% CI, 0.63-0.76), outperforming either marker alone, with a response rate of 51% compared to 41% for PD-L1 (≥50%) alone. Conclusions and Relevance The findings of this cohort study demonstrate a strong and independent deep learning−based feature associated with ICI response in patients with NSCLC across various cohorts. Clinical use of this deep learning model could refine treatment precision and better identify patients who are likely to benefit from ICI for treatment of advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
鹿茸与共发布了新的文献求助30
24秒前
24秒前
无心的板凳完成签到,获得积分10
37秒前
古人完成签到,获得积分10
41秒前
123完成签到 ,获得积分10
49秒前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
LY发布了新的文献求助10
1分钟前
LY完成签到,获得积分20
2分钟前
Xin完成签到,获得积分20
2分钟前
2分钟前
李健的粉丝团团长应助Xin采纳,获得10
2分钟前
古人发布了新的文献求助10
2分钟前
3分钟前
Jason完成签到 ,获得积分10
3分钟前
科研通AI5应助健忘的幻梅采纳,获得10
4分钟前
小白菜完成签到,获得积分10
4分钟前
4分钟前
QiongYin_123完成签到 ,获得积分10
4分钟前
jackone完成签到,获得积分10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
完美世界应助cc采纳,获得10
5分钟前
5分钟前
cc发布了新的文献求助10
5分钟前
Arthur完成签到 ,获得积分10
6分钟前
6分钟前
慕青应助xc采纳,获得10
6分钟前
6分钟前
air233发布了新的文献求助10
6分钟前
xc发布了新的文献求助10
6分钟前
air233完成签到,获得积分10
6分钟前
6分钟前
6分钟前
莘莘发布了新的文献求助10
6分钟前
鹿茸与共发布了新的文献求助10
6分钟前
6分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746109
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005273
什么是DOI,文献DOI怎么找? 1650147
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242