清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Model for Predicting Immunotherapy Response in Advanced Non−Small Cell Lung Cancer

医学 内科学 肺癌 肿瘤科 队列 免疫疗法 队列研究 癌症
作者
Mehrdad Rakaee,Masoud Tafavvoghi,Biagio Ricciuti,Joao V. Alessi,Alessio Cortellini,Fabrizio Citarella,Lorenzo Nibid,Giuseppe Perrone,Elio Adib,Claudia Angela Maria Fulgenzi,Cássio Murilo Trovo Hidalgo Filho,Alessandro Di Federico,Falah Jabar,Sayed M.S. Hashemi,Ilias Houda,Elin Richardsen,Lill‐Tove Busund,Tom Dønnem,Idris Bahce,David J. Pinato,Åslaug Helland,Lynette M. Sholl,Mark M. Awad,David J. Kwiatkowski
出处
期刊:JAMA Oncology [American Medical Association]
标识
DOI:10.1001/jamaoncol.2024.5356
摘要

Importance Only a small fraction of patients with advanced non−small cell lung cancer (NSCLC) respond to immune checkpoint inhibitor (ICI) treatment. For optimal personalized NSCLC care, it is imperative to identify patients who are most likely to benefit from immunotherapy. Objective To develop a supervised deep learning−based ICI response prediction method; evaluate its performance alongside other known predictive biomarkers; and assess its association with clinical outcomes in patients with advanced NSCLC. Design, Setting, and Participants This multicenter cohort study developed and independently validated a deep learning−based response stratification model for predicting ICI treatment outcome in patients with advanced NSCLC from whole slide hematoxylin and eosin–stained images. Images for model development and validation were obtained from 1 participating center in the US and 3 in the European Union (EU) from August 2014 to December 2022. Data analyses were performed from September 2022 to May 2024. Exposure Monotherapy with ICIs. Main Outcomes and Measures Model performance measured by clinical end points and objective response rate (ORR) differentiation power vs other predictive biomarkers, ie, programmed death-ligand 1 (PD-L1), tumor mutational burden (TMB), and tumor-infiltrating lymphocytes (TILs). Results A total of 295 581 image tiles from 958 patients (mean [SD] age, 66.0 [10.6] years; 456 [48%] females and 502 [52%] males) treated with ICI for NSCLC were included in the analysis. The US-based development cohort consisted of 614 patients with median (IQR) follow-up time of 54.5 (38.2-68.1) months, and the EU-based validation cohort, 344 patients with 43.3 (27.4-53.9) months of follow-up. The ORR to ICI was 26% in the developmental cohort and 28% in the validation cohort. The deep learning model’s area under the receiver operating characteristic curve (AUC) for ORR was 0.75 (95% CI, 0.64-0.85) in the internal test set and 0.66 (95% CI, 0.60-0.72) in the validation cohort. In a multivariable analysis, the deep learning model’s score was an independent predictor of ICI response in the validation cohort for both progression-free (hazard ratio, 0.56; 95% CI, 0.42-0.76; P < .001) and overall survival (hazard ratio, 0.53; 95% CI, 0.39-0.73; P < .001). The tuned deep learning model achieved a higher AUC than TMB, TILs, and PD-L1 in the internal set; in the validation cohort, it was superior to TILs and comparable with PD-L1 (AUC, 0.67; 95% CI, 0.60-0.74), with a 10-percentage point improvement in specificity. In the validation cohort, combining the deep learning model with PD-L1 scores achieved an AUC of 0.70 (95% CI, 0.63-0.76), outperforming either marker alone, with a response rate of 51% compared to 41% for PD-L1 (≥50%) alone. Conclusions and Relevance The findings of this cohort study demonstrate a strong and independent deep learning−based feature associated with ICI response in patients with NSCLC across various cohorts. Clinical use of this deep learning model could refine treatment precision and better identify patients who are likely to benefit from ICI for treatment of advanced NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯哦哦哦完成签到 ,获得积分10
8秒前
所得皆所愿完成签到 ,获得积分10
36秒前
方赫然应助科研通管家采纳,获得10
38秒前
方赫然应助科研通管家采纳,获得10
38秒前
科目三应助科研通管家采纳,获得10
38秒前
你博哥完成签到 ,获得积分10
40秒前
Gary完成签到 ,获得积分10
44秒前
InaZheng发布了新的文献求助30
45秒前
杨乃彬完成签到,获得积分10
48秒前
小乙猪完成签到 ,获得积分0
1分钟前
云墨完成签到 ,获得积分10
1分钟前
1分钟前
InaZheng完成签到,获得积分10
1分钟前
阳光森林完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
炎炎夏无声完成签到 ,获得积分10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
tjpuzhang完成签到 ,获得积分10
1分钟前
1分钟前
楚襄谷完成签到 ,获得积分10
2分钟前
SDM完成签到 ,获得积分10
2分钟前
2分钟前
huiluowork完成签到 ,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
方赫然应助科研通管家采纳,获得10
2分钟前
方赫然应助科研通管家采纳,获得10
2分钟前
方赫然应助科研通管家采纳,获得10
2分钟前
CCC发布了新的文献求助100
2分钟前
DXM完成签到 ,获得积分10
2分钟前
xiaozhang完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助Jim luo采纳,获得10
2分钟前
顺利完成签到,获得积分10
3分钟前
3分钟前
Jim luo完成签到,获得积分10
3分钟前
ww完成签到,获得积分10
3分钟前
Jim luo发布了新的文献求助10
3分钟前
空曲完成签到 ,获得积分10
3分钟前
3分钟前
wwe完成签到,获得积分10
3分钟前
Sunny完成签到 ,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294687
求助须知:如何正确求助?哪些是违规求助? 2930525
关于积分的说明 8446221
捐赠科研通 2602820
什么是DOI,文献DOI怎么找? 1420739
科研通“疑难数据库(出版商)”最低求助积分说明 660667
邀请新用户注册赠送积分活动 643443