Strain‐Induced Tunable Enhancement of Piezoelectricity in a Novel Molecular Multiferroic Material

多铁性 材料科学 铁电性 压电 密度泛函理论 纳米技术 凝聚态物理 电介质 光电子学 复合材料 计算化学 物理 化学
作者
Qiang Pan,Yu‐An Xiong,Tai‐Ting Sha,Zi‐Jie Feng,Ru‐Jie Zhou,Jie Yao,Huihui Hu,Yu‐Meng You
出处
期刊:Advanced Materials [Wiley]
被引量:3
标识
DOI:10.1002/adma.202410585
摘要

Abstract Multiferroics are appealing because of application potentials in data storage devices, sensors, transducers, and energy harvesters. Molecular multiferroics emerge as a promising alternative to inorganic multiferroics due to flexibility, light weight, low toxicity, solution processing, structural diversity, and chemical tunability. While researches have predominantly focused on perovskite structures, studies on molecular ionic multiferroics remain relatively limited. It is urgent to creatively build a novel platform for studying and developing the coupling and interaction between the stress, electricity, and magnetism. Knowing this, the work focuses on a novel organic–inorganic hybrid multiferroic N ‐ethyl‐ N ‐(fluoromethyl)‐ N ‐methylethylammonium tetrabromoferrate (III) showing coexisting magnetic and electric orderings. It undergoes antiferromagnetic, ferroelectric, and ferroelastic transitions. Notably, under a strain of 2.0%, the piezoelectric response increases tenfold, and the coercive field of ferroelectric polarization is reduced by half. The strain‐induced enhancement of piezoelectricity is rarely reported in molecular multiferroics. Density functional theory is employed to predict that the mechanism of the large piezoelectric response under strain engineering is related to the cation rotation and phase switching between the stable phase and an energetically competitive metastable phase. This study creates a new paradigm to develop molecular multiferroics and future microelectronic devices for energy conversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
unyield完成签到,获得积分10
刚刚
bkagyin应助研友_pLwpKn采纳,获得30
刚刚
Hikx完成签到 ,获得积分10
刚刚
deer完成签到,获得积分10
1秒前
杨冠渊完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
xx发布了新的文献求助10
2秒前
田様应助wj采纳,获得10
2秒前
changhaowenzzz完成签到,获得积分10
2秒前
Yusang完成签到,获得积分10
3秒前
ctttt发布了新的文献求助10
3秒前
3秒前
快乐小菜瓜完成签到 ,获得积分10
3秒前
3秒前
3秒前
心落失完成签到,获得积分10
3秒前
研友_ZGAeoL完成签到,获得积分10
4秒前
4秒前
应急食品完成签到,获得积分10
5秒前
Lynn完成签到,获得积分10
6秒前
简单酒窝发布了新的文献求助10
6秒前
小小发布了新的文献求助30
6秒前
小二郎应助wenbin采纳,获得10
6秒前
7秒前
小蘑菇应助ohen67采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
123study0完成签到,获得积分10
7秒前
8秒前
楠楠DAYTOY发布了新的文献求助10
8秒前
Rocky_Qi发布了新的文献求助10
8秒前
cc发布了新的文献求助10
8秒前
杨冠渊发布了新的文献求助10
8秒前
9秒前
清蒸鱼发布了新的文献求助10
9秒前
Hien完成签到,获得积分10
9秒前
9秒前
ilihe应助dtcao采纳,获得10
9秒前
ding应助笨鸟先飞采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279