半夏
代谢组学
细胞外小泡
代谢组
生物
计算生物学
化学
生物信息学
细胞生物学
中医药
医学
替代医学
病理
作者
Fuxing Shu,Surendra Sarsaiya,Lili Ren,Leilei Jin,Yuanyuan Hu,Ling Qiao,Xiaoqing Xu,Guoguang Chen,Jishuang Chen
摘要
Abstract Plant‐derived nanovesicles (PDNVs) and extracellular vesicles (EVs) represent a promising area of research due to their unique properties and potential therapeutic applications. Pinellia ternata (P. ternata) is well‐known for its pharmacological properties but the PDNVs and EVs derived from it have been largely understudied. Previous studies have shown that a Temporary Immersion Bioreactor System (TIBS) plays an important role in controlling plant growth in order to obtain reproducible EVs and PDNVs. PDNVs were isolated from P. ternata plants and EVs were collected in the TIBS medium via ultra‐high‐speed differential centrifugation. Particle size, Zeta potentials and particle concentrations were assessed for PDNVs and EVs. Furthermore, non‐targeted metabolomics was used to assess metabolic compositional differences between EVs and PDNVs, enabling the evaluation of the TIBS's quality control efficacy. Metabolomic profiling revealed 1072 metabolites in PDNVs and EVs, including 426 differential metabolites (DMs) distinguishing PDNVs from EVs: 362 DMs were positively correlated with PDNVs and 64 DMs were positively correlated with EVs; they were enriched across 17 KEGG pathways. PCA, PLS‐DA, and metabolite sample correlation analyses showed high consistency between the replicates (PDNVs >0.87, EVs >0.93). This study demonstrated that TIBS is a performant system allowing consistency in generating PDNVs and EVs from P. ternata. We also highlighted the metabolic differences between PDNVs and EVs, guiding researchers in finding the bet system to produce efficient nanodrugs containing P. ternata pharmacological compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI