Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 喷嘴 生物 热力学 数学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助qliu采纳,获得10
1秒前
1秒前
慕青应助beyondjun采纳,获得10
2秒前
梦醒了完成签到 ,获得积分10
2秒前
杨小黑发布了新的文献求助10
3秒前
柯一一应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助科研通管家采纳,获得20
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
典雅听枫发布了新的文献求助10
5秒前
5秒前
默欢完成签到,获得积分10
6秒前
6秒前
求知的周完成签到,获得积分10
8秒前
cass发布了新的文献求助10
8秒前
乐乐应助乐观囧采纳,获得10
9秒前
10秒前
Ava应助油糕饵块采纳,获得10
11秒前
11秒前
李威龙发布了新的文献求助10
11秒前
Ekko完成签到,获得积分10
12秒前
Emy完成签到,获得积分10
12秒前
所所应助Ah采纳,获得10
12秒前
李爱国应助典雅听枫采纳,获得10
13秒前
内向寒云发布了新的文献求助10
14秒前
FDSDK发布了新的文献求助10
14秒前
英姑应助syx采纳,获得10
14秒前
CodeCraft应助LLL采纳,获得10
17秒前
18秒前
希望天下0贩的0应助刘阔采纳,获得10
18秒前
Emy发布了新的文献求助10
21秒前
秀丽的曼雁完成签到,获得积分10
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382