Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 数学 喷嘴 生物 热力学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:7
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比奇堡不想上班派大星完成签到 ,获得积分10
1秒前
背后的雪卉应助冥土采纳,获得10
2秒前
2秒前
zho应助琳666采纳,获得10
3秒前
4秒前
Zr完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
维奈克拉应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得100
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
子车茗应助科研通管家采纳,获得100
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得30
5秒前
维奈克拉应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
南小木完成签到,获得积分20
6秒前
7秒前
上官若男应助Nell采纳,获得10
7秒前
zilhua发布了新的文献求助10
9秒前
Ava应助ZZZ采纳,获得10
9秒前
顾矜应助小L采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343