Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 数学 喷嘴 生物 热力学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚定的海露完成签到,获得积分10
刚刚
LLLLLL发布了新的文献求助10
1秒前
CYY发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助莫华龙采纳,获得10
1秒前
9298488发布了新的文献求助10
1秒前
FashionBoy应助激昂的元芹采纳,获得10
1秒前
不安寄容发布了新的文献求助10
2秒前
2秒前
3秒前
Getlogger发布了新的文献求助10
3秒前
胖虎不胖完成签到 ,获得积分10
3秒前
Stella完成签到,获得积分10
4秒前
nnnnn发布了新的文献求助10
5秒前
你莫停发布了新的文献求助10
5秒前
Hello应助LLLLL采纳,获得10
5秒前
xiaoyeken发布了新的文献求助20
6秒前
6秒前
深情安青应助陈永伟采纳,获得10
7秒前
7秒前
mihhhhh发布了新的文献求助10
7秒前
59完成签到 ,获得积分10
7秒前
7秒前
张英俊发布了新的文献求助10
8秒前
赘婿应助CFC12采纳,获得30
8秒前
机智的胖达完成签到,获得积分10
8秒前
9秒前
mhl11应助阿峰采纳,获得10
9秒前
9秒前
colddie完成签到,获得积分10
9秒前
烟花应助菠萝吹雪采纳,获得10
9秒前
啊啊啊完成签到 ,获得积分10
10秒前
orixero应助缄默采纳,获得10
10秒前
Jasper应助Getlogger采纳,获得10
10秒前
嘟嘟发布了新的文献求助10
10秒前
10秒前
11秒前
尔玉完成签到,获得积分10
11秒前
yxc完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
《Undergraduate Research & the Academic Librarian: Case Studies and Best Practices, Volume 2》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397