Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 数学 喷嘴 生物 热力学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静完成签到,获得积分10
1秒前
medlive2020发布了新的文献求助10
1秒前
1秒前
子车定帮完成签到,获得积分10
1秒前
2秒前
pragmatic发布了新的文献求助10
2秒前
土豆完成签到,获得积分10
2秒前
bbb完成签到,获得积分10
2秒前
3秒前
feijelly完成签到,获得积分10
3秒前
踏实幻巧发布了新的文献求助20
5秒前
zjzxs发布了新的文献求助10
5秒前
5秒前
6秒前
我是老大应助calmxp采纳,获得10
6秒前
NikiJu完成签到,获得积分10
7秒前
7秒前
彬彬嘉完成签到,获得积分10
7秒前
pancitou发布了新的文献求助10
7秒前
7秒前
英勇小熊猫完成签到,获得积分10
7秒前
王大帅哥完成签到,获得积分10
7秒前
土豆发布了新的文献求助10
8秒前
Yu给Yu的求助进行了留言
8秒前
8秒前
狂野的汉堡完成签到,获得积分10
8秒前
ydxhh完成签到,获得积分10
9秒前
medlive2020完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
abjz完成签到,获得积分10
10秒前
bai完成签到,获得积分10
10秒前
Kasom完成签到 ,获得积分10
10秒前
科研通AI6应助2323采纳,获得10
11秒前
11秒前
11秒前
张晓倩发布了新的文献求助10
11秒前
Mel发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067604
求助须知:如何正确求助?哪些是违规求助? 4289401
关于积分的说明 13363233
捐赠科研通 4108943
什么是DOI,文献DOI怎么找? 2250001
邀请新用户注册赠送积分活动 1255446
关于科研通互助平台的介绍 1187947