Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 喷嘴 生物 热力学 数学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12) 被引量:7
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小周同学完成签到 ,获得积分10
1秒前
1秒前
Jasper应助纯真的凌兰采纳,获得30
4秒前
蝈蝈发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
蓝天应助早安采纳,获得30
8秒前
Lucas应助Muncy采纳,获得10
10秒前
田様应助FYX采纳,获得10
11秒前
fuchao发布了新的文献求助10
12秒前
考拉发布了新的文献求助30
12秒前
科研欢欢鱼完成签到,获得积分10
13秒前
活力怀绿完成签到,获得积分10
15秒前
田様应助无事小神仙采纳,获得10
16秒前
20秒前
丰盛的煎饼完成签到,获得积分0
20秒前
不难不难完成签到,获得积分10
22秒前
共享精神应助荔枝采纳,获得10
24秒前
yugy发布了新的文献求助10
25秒前
26秒前
无极微光应助古月采纳,获得20
27秒前
27秒前
材小料发布了新的文献求助10
31秒前
ChenXY完成签到,获得积分10
31秒前
halo发布了新的文献求助10
32秒前
lst完成签到,获得积分10
33秒前
科研通AI2S应助kangk采纳,获得10
34秒前
浮游应助空明流毓采纳,获得10
36秒前
37秒前
YUESIYA发布了新的文献求助30
38秒前
寒冷的奇异果完成签到,获得积分10
38秒前
spc68应助早安采纳,获得10
42秒前
复成完成签到 ,获得积分10
44秒前
光亮妙之完成签到,获得积分10
44秒前
dd发布了新的文献求助30
44秒前
整齐半青完成签到 ,获得积分10
44秒前
你好完成签到,获得积分10
45秒前
chenanqi完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521