Predicting the depth of rock cutting by abrasive water jet using support vector machine optimized with whale optimization algorithm

物理 鲸鱼 喷射(流体) 支持向量机 水射流 优化算法 磨料 算法 机械工程 人工智能 机械 数学优化 计算机科学 工程类 渔业 喷嘴 生物 热力学 数学
作者
Zhongtan Li,Zhaolong Ge,Qinglin Deng,Zhe Zhou,Chun Zhu,Lei Liu,Zhi Yao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (12)
标识
DOI:10.1063/5.0245419
摘要

The utilization of abrasive water jet (AWJ) has garnered notable attention in subsurface engineering, as well as unconventional natural gas development, geothermal energy extraction, and tunnel excavation. The efficiency of construction operations is contingent upon rock fragmentation, which is controlled by AWJ parameters and rock properties. Currently, the parameter settings for rock fragmentation by AWJ predominantly rely on empirical approaches, and existing prediction models have large errors due to a limited number of training samples. In this study, we propose a combined support vector machine (SVM) and whale optimization algorithm (WOA) model. To test the model's predictive performance for rock-breaking depth, a database consisting of eight input parameters is constructed. These parameters include AWJ pressure, target distance, lateral velocity, abrasive types, mass flow rate, abrasive particle size, rock types, and rock uniaxial compressive strength. Additionally, to demonstrate the superiority of the WOA-SVM model, three other predictive models based on the back propagation (BP) network, SVM, and Random Forest (RF) are established, compared, and evaluated. The results show that the optimized WOA-SVM model is the most accurate in predicting rock cutting depth, achieving a precision rate of 0.972 25 compared to other models (BP: 0.9536; RF: 0.9681; SVM: 0.9687). Furthermore, sensitivity analysis highlights that lateral velocity exhibits the highest impact on the model, followed by jet pressure and the uniaxial compressive strength of rock. This underscores the critical importance of prioritizing the adjustment of lateral velocity, AWJ pressure, and rock properties when engaging in rock-cutting operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助zy采纳,获得10
刚刚
科研通AI6应助Fighter采纳,获得10
刚刚
Jasper应助hbkyt采纳,获得10
刚刚
zzioo发布了新的文献求助10
1秒前
1秒前
jeitt完成签到,获得积分10
2秒前
2秒前
王羊补牢完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
More发布了新的文献求助10
3秒前
icypz628发布了新的文献求助10
4秒前
0717号执行官完成签到,获得积分10
4秒前
波西米亚完成签到,获得积分10
4秒前
无花果应助张志迪采纳,获得10
4秒前
4秒前
绵糖悠悠羊完成签到,获得积分10
5秒前
5秒前
5秒前
zheng-homes发布了新的文献求助10
5秒前
王太祖完成签到,获得积分10
7秒前
852应助fxy采纳,获得10
7秒前
万能图书馆应助yeahCZY采纳,获得10
7秒前
kidney发布了新的文献求助10
8秒前
小状元发布了新的文献求助10
8秒前
悠悠完成签到,获得积分10
9秒前
JamesPei应助阔达的烧鹅采纳,获得10
9秒前
酷波er应助wait采纳,获得10
9秒前
Yuan发布了新的文献求助10
9秒前
zy发布了新的文献求助10
10秒前
Lucas应助yongkun采纳,获得10
11秒前
zheng-homes完成签到,获得积分10
11秒前
冷傲的如凡完成签到,获得积分10
12秒前
T淋巴细胞完成签到,获得积分10
13秒前
怡然的城发布了新的文献求助10
13秒前
14秒前
Sunflower完成签到 ,获得积分20
14秒前
15秒前
Ronan完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758