High-throughput methylation sequencing reveals novel biomarkers for the early detection of renal cell carcinoma

外科肿瘤学 DNA甲基化 甲基化 肾细胞癌 医学 计算生物学 表观遗传学 吞吐量 肿瘤科 癌症研究 生物信息学 内科学 生物 基因 遗传学 基因表达 计算机科学 电信 无线
作者
Wenhao Guo,Weiwu Chen,Jie Zhang,Mingzhe Li,Hongyuan Huang,Qian Wang,Xiaoyi Fei,Jian Huang,Tongning Zheng,Haobo Fan,Yunfei Wang,Hongcang Gu,Guoqing Ding,Yi‐Cheng Chen
出处
期刊:BMC Cancer [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12885-024-13380-6
摘要

Renal cell carcinoma (RCC) is a common malignancy, with patients frequently diagnosed at an advanced stage due to the absence of sufficiently sensitive detection technologies, significantly compromising patient survival and quality of life. Advances in cell-free DNA (cfDNA) methylation profiling using liquid biopsies offer a promising non-invasive diagnostic option, but robust biomarkers for early detection are current not available. This study aimed to identify methylation biomarkers for RCC and establish a DNA methylation signature-based prognostic model for this disease. High-throughput methylation sequencing was performed on peripheral blood samples obtained from 49 primarily Stage I RCC patients and 44 healthy controls. Comparative analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression methods were employed to identify RCC methylation signatures.Subsequently, methylation markers-based diagnostic and prognostic models for RCC were independently trained and validated using random forest and Cox regression methodologies, respectively. Comparative analysis revealed 864 differentially methylated CpG islands (DMCGIs), 96.3% of which were hypermethylated. Using a training set from The Cancer Genome Atlas (TCGA) dataset of 443 early-stage RCC tumors and matched normal tissues, we applied LASSO regression and identified 23 methylation signatures. We then constructed a random forest-based diagnostic model for early-stage RCC and validated the model using two independent datasets: a TCGA set of 460 RCC tumors and controls, and a blood sample set from our study of 15 RCC cases and 29 healthy controls. For Stage I RCC tissue, the model showed excellent discrimination (AUC-ROC: 0.999, sensitivity: 98.5%, specificity: 100%). Blood sample validation also yielded commendable results (AUC-ROC: 0.852, sensitivity: 73.9%, specificity: 89.7%). Further analysis using Cox regression identified 7 of the 23 DMCGIs as prognostic markers for RCC, allowing the development of a prognostic model with strong predictive power for 1-, 3-, and 5-year survival (AUC-ROC > 0.7). Our findings highlight the critical role of hypermethylation in RCC etiology and progression, and present these identified biomarkers as promising candidates for diagnostic and prognostic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿嘿嘿发布了新的文献求助10
刚刚
英俊的铭应助evaporator采纳,获得10
刚刚
曹冬子程完成签到,获得积分10
1秒前
Function完成签到,获得积分10
1秒前
一颗红葡萄完成签到 ,获得积分10
1秒前
病猫完成签到,获得积分10
2秒前
FashionBoy应助mirror采纳,获得10
2秒前
2秒前
子车茗应助guozizi采纳,获得30
2秒前
2秒前
慕青应助有魅力的含海采纳,获得10
2秒前
自由薯片完成签到,获得积分10
3秒前
草莓月亮完成签到,获得积分20
3秒前
wanci应助菲菲公主采纳,获得10
3秒前
huangtian205完成签到,获得积分20
4秒前
比莉爱历史完成签到,获得积分10
4秒前
传奇3应助小乖采纳,获得10
4秒前
表里醉发布了新的文献求助10
5秒前
所爱皆在完成签到 ,获得积分10
5秒前
5秒前
小5老师完成签到,获得积分10
5秒前
李爱国应助指北针采纳,获得10
5秒前
6秒前
luffy完成签到 ,获得积分10
6秒前
6秒前
我是老大应助优雅老六采纳,获得10
6秒前
6秒前
等等等等完成签到,获得积分10
6秒前
画大饼发布了新的文献求助10
6秒前
7秒前
123~!完成签到,获得积分10
7秒前
挖掘机完成签到,获得积分10
7秒前
7秒前
luyunxing完成签到,获得积分10
8秒前
zxy929600959完成签到,获得积分10
8秒前
8秒前
日匀完成签到,获得积分20
9秒前
Sandwich完成签到,获得积分20
9秒前
karan完成签到,获得积分10
9秒前
Evelyn完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257269
求助须知:如何正确求助?哪些是违规求助? 4419464
关于积分的说明 13756172
捐赠科研通 4292683
什么是DOI,文献DOI怎么找? 2355623
邀请新用户注册赠送积分活动 1352050
关于科研通互助平台的介绍 1312824