High-throughput methylation sequencing reveals novel biomarkers for the early detection of renal cell carcinoma

外科肿瘤学 DNA甲基化 甲基化 肾细胞癌 医学 计算生物学 表观遗传学 吞吐量 肿瘤科 癌症研究 生物信息学 内科学 生物 基因 遗传学 基因表达 计算机科学 电信 无线
作者
Wenhao Guo,Weiwu Chen,Jie Zhang,Mingzhe Li,Hongyuan Huang,Qian Wang,Xiaoyi Fei,Jian Huang,Tongning Zheng,Haobo Fan,Yunfei Wang,Hongcang Gu,Guoqing Ding,Yi‐Cheng Chen
出处
期刊:BMC Cancer [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12885-024-13380-6
摘要

Renal cell carcinoma (RCC) is a common malignancy, with patients frequently diagnosed at an advanced stage due to the absence of sufficiently sensitive detection technologies, significantly compromising patient survival and quality of life. Advances in cell-free DNA (cfDNA) methylation profiling using liquid biopsies offer a promising non-invasive diagnostic option, but robust biomarkers for early detection are current not available. This study aimed to identify methylation biomarkers for RCC and establish a DNA methylation signature-based prognostic model for this disease. High-throughput methylation sequencing was performed on peripheral blood samples obtained from 49 primarily Stage I RCC patients and 44 healthy controls. Comparative analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression methods were employed to identify RCC methylation signatures.Subsequently, methylation markers-based diagnostic and prognostic models for RCC were independently trained and validated using random forest and Cox regression methodologies, respectively. Comparative analysis revealed 864 differentially methylated CpG islands (DMCGIs), 96.3% of which were hypermethylated. Using a training set from The Cancer Genome Atlas (TCGA) dataset of 443 early-stage RCC tumors and matched normal tissues, we applied LASSO regression and identified 23 methylation signatures. We then constructed a random forest-based diagnostic model for early-stage RCC and validated the model using two independent datasets: a TCGA set of 460 RCC tumors and controls, and a blood sample set from our study of 15 RCC cases and 29 healthy controls. For Stage I RCC tissue, the model showed excellent discrimination (AUC-ROC: 0.999, sensitivity: 98.5%, specificity: 100%). Blood sample validation also yielded commendable results (AUC-ROC: 0.852, sensitivity: 73.9%, specificity: 89.7%). Further analysis using Cox regression identified 7 of the 23 DMCGIs as prognostic markers for RCC, allowing the development of a prognostic model with strong predictive power for 1-, 3-, and 5-year survival (AUC-ROC > 0.7). Our findings highlight the critical role of hypermethylation in RCC etiology and progression, and present these identified biomarkers as promising candidates for diagnostic and prognostic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
lxo完成签到,获得积分20
3秒前
5秒前
6秒前
耿耿发布了新的文献求助10
7秒前
Akim应助李歪歪采纳,获得10
8秒前
Tici发布了新的文献求助10
8秒前
crk完成签到,获得积分10
8秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
12秒前
结实的寒梦完成签到,获得积分10
13秒前
crk发布了新的文献求助10
15秒前
VvV发布了新的文献求助20
16秒前
18秒前
19秒前
旭旭完成签到 ,获得积分10
20秒前
合适忆之完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
moonlight发布了新的文献求助10
23秒前
灵长类完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
合适忆之发布了新的文献求助10
25秒前
Jasper应助老迟到的凝丝采纳,获得10
27秒前
灵长类发布了新的文献求助10
27秒前
27秒前
英俊的铭应助屎球球采纳,获得10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352176
求助须知:如何正确求助?哪些是违规求助? 2977468
关于积分的说明 8679552
捐赠科研通 2658433
什么是DOI,文献DOI怎么找? 1455771
科研通“疑难数据库(出版商)”最低求助积分说明 674090
邀请新用户注册赠送积分活动 664651