High-throughput methylation sequencing reveals novel biomarkers for the early detection of renal cell carcinoma

外科肿瘤学 DNA甲基化 甲基化 肾细胞癌 医学 计算生物学 表观遗传学 吞吐量 肿瘤科 癌症研究 生物信息学 内科学 生物 基因 遗传学 基因表达 计算机科学 无线 电信
作者
Wenhao Guo,Weiwu Chen,Jie Zhang,Mingzhe Li,Hongyuan Huang,Qian Wang,Xiaoyi Fei,Jian Huang,Tongning Zheng,Haobo Fan,Yunfei Wang,Hongcang Gu,Guoqing Ding,Yi‐Cheng Chen
出处
期刊:BMC Cancer [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12885-024-13380-6
摘要

Renal cell carcinoma (RCC) is a common malignancy, with patients frequently diagnosed at an advanced stage due to the absence of sufficiently sensitive detection technologies, significantly compromising patient survival and quality of life. Advances in cell-free DNA (cfDNA) methylation profiling using liquid biopsies offer a promising non-invasive diagnostic option, but robust biomarkers for early detection are current not available. This study aimed to identify methylation biomarkers for RCC and establish a DNA methylation signature-based prognostic model for this disease. High-throughput methylation sequencing was performed on peripheral blood samples obtained from 49 primarily Stage I RCC patients and 44 healthy controls. Comparative analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression methods were employed to identify RCC methylation signatures.Subsequently, methylation markers-based diagnostic and prognostic models for RCC were independently trained and validated using random forest and Cox regression methodologies, respectively. Comparative analysis revealed 864 differentially methylated CpG islands (DMCGIs), 96.3% of which were hypermethylated. Using a training set from The Cancer Genome Atlas (TCGA) dataset of 443 early-stage RCC tumors and matched normal tissues, we applied LASSO regression and identified 23 methylation signatures. We then constructed a random forest-based diagnostic model for early-stage RCC and validated the model using two independent datasets: a TCGA set of 460 RCC tumors and controls, and a blood sample set from our study of 15 RCC cases and 29 healthy controls. For Stage I RCC tissue, the model showed excellent discrimination (AUC-ROC: 0.999, sensitivity: 98.5%, specificity: 100%). Blood sample validation also yielded commendable results (AUC-ROC: 0.852, sensitivity: 73.9%, specificity: 89.7%). Further analysis using Cox regression identified 7 of the 23 DMCGIs as prognostic markers for RCC, allowing the development of a prognostic model with strong predictive power for 1-, 3-, and 5-year survival (AUC-ROC > 0.7). Our findings highlight the critical role of hypermethylation in RCC etiology and progression, and present these identified biomarkers as promising candidates for diagnostic and prognostic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
半壶月色半边天完成签到 ,获得积分10
1秒前
思源应助xuxuxu采纳,获得10
1秒前
Sunny发布了新的文献求助10
1秒前
Amani_Nakupenda应助阿牛奶采纳,获得20
1秒前
jingjing发布了新的文献求助30
1秒前
1秒前
英姑应助王路飞采纳,获得10
2秒前
an12138发布了新的文献求助10
3秒前
3秒前
3秒前
happiness发布了新的文献求助10
3秒前
3秒前
3秒前
超越发布了新的文献求助10
3秒前
犹豫的芝麻完成签到 ,获得积分10
4秒前
ksq完成签到,获得积分10
4秒前
不挑食的Marcophages完成签到,获得积分10
4秒前
王逗逗完成签到,获得积分10
4秒前
科研通AI2S应助psl采纳,获得10
4秒前
傅全有完成签到,获得积分10
4秒前
dzp发布了新的文献求助10
5秒前
乐观三问发布了新的文献求助10
5秒前
独特觅儿完成签到,获得积分10
5秒前
Owen应助liiy采纳,获得10
5秒前
BBBBBlue先森应助Doris采纳,获得10
6秒前
大个应助yecheng采纳,获得10
6秒前
6秒前
6秒前
打工人发布了新的文献求助10
6秒前
李芳完成签到,获得积分10
6秒前
hzs发布了新的文献求助30
6秒前
nihao完成签到,获得积分10
6秒前
科研kkkkkkkk完成签到,获得积分10
7秒前
weiwenzuo发布了新的文献求助10
7秒前
敲敲应助欧欧欧导采纳,获得10
7秒前
7秒前
汉堡包应助ningqing采纳,获得10
7秒前
嗯哼大王完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445