可靠性(半导体)
薄膜晶体管
压力(语言学)
材料科学
对偶(语法数字)
光电子学
可靠性工程
电子工程
纳米技术
工程类
物理
热力学
艺术
功率(物理)
语言学
哲学
文学类
图层(电子)
作者
Jingxuan Wei,Nannan Li,Yu Zhang,Xuefeng Wu,Jiyuan Zhu,Rongxu Bai,Chao Xin,Wenrui Zhang,Ji Li,Qingqing Sun,David Wei Zhang,Shen Hu
出处
期刊:AIP Advances
[American Institute of Physics]
日期:2024-11-01
卷期号:14 (11)
摘要
Indium–gallium–zinc oxide (IGZO) as a star material has been broadly applied in multiple functional devices, including planar displays, flexible electronic devices, and photoelectronics. In recent years, the development of artificial intelligence and great data also extends the application of IGZO-based thin film transistors (TFTs) to memory, memristors, and neuromorphic computing. Thus, the research of high performance and reliable IGZO TFTs attracts tremendous attention worldwide. Herein, a high-quality IGZO thin film was deposited via atomic layer deposition, and a dual-gate (DG) IGZO TFT was fabricated. Comprehensive electrical characterization was conducted on the fabricated DG IGZO TFTs, revealing that DG IGZO TFTs exhibited good performance for reliability analysis. The reliability and degradation mechanism of the DG IGZO TFT was systematically investigated under bias stress at room temperature and elevated temperatures of 350, 400, and 450 K by the comprehensive electrical characterization. Results indicate that the defects of the dual gate insulators and the interfaces majorly influence the degradation under bias stresses, while the carrier scattering of the IGZO channel is the major degradation mechanism under elevated temperatures. These findings highlight the degradation mechanism of the DG IGZO TFT under bias stress and elevated temperatures from a novel viewpoint, which provides a utilizable reference to its application in circuits.
科研通智能强力驱动
Strongly Powered by AbleSci AI