Non-Destructive Detection of Tea Polyphenols in Fu Brick Tea Based on Hyperspectral Imaging and Improved PKO-SVR Method

高光谱成像 多酚 化学 人工智能 计算机科学 材料科学 复合材料 生物化学 抗氧化剂
作者
Junyao Gong,Gang Chen,Yuezhao Deng,Cheng Li,Kui Fang
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (10): 1701-1701
标识
DOI:10.3390/agriculture14101701
摘要

Tea polyphenols (TPs) are a critical indicator for evaluating the quality of tea leaves and are esteemed for their beneficial effects. The non-destructive detection of this component is essential for enhancing precise control in tea production and improving product quality. This study developed an enhanced PKO-SVR (support vector regression based on the Pied Kingfisher Optimization Algorithm) model for rapidly and accurately detecting tea polyphenol content in Fu brick tea using hyperspectral reflectance data. During this experiment, chemical analysis determined the tea polyphenol content, while hyperspectral imaging captured the spectral data. Data preprocessing techniques were applied to reduce noise interference and improve the prediction model. Additionally, several other models, including K-nearest neighbor (KNN) regression, neural network regression (BP), support vector regression based on the sparrow algorithm (SSA-SVR), and support vector regression based on particle swarm optimization (PSO-SVR), were established for comparison. The experiment results demonstrated that the improved PKO-SVR model excelled in predicting the polyphenol content of Fu brick tea (R2 = 0.9152, RMSE = 0.5876, RPD = 3.4345 for the test set) and also exhibited a faster convergence rate. Therefore, the hyperspectral data combined with the PKO-SVR algorithm presented in this study proved effective for evaluating Fu brick tea’s polyphenol content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的斑马完成签到,获得积分10
2秒前
2秒前
完美世界应助Windycityguy采纳,获得10
2秒前
深情安青应助starlx0813采纳,获得10
3秒前
3秒前
义气丹雪应助细腻听白采纳,获得100
3秒前
Re发布了新的文献求助10
3秒前
科研通AI6.1应助热情千风采纳,获得10
4秒前
雨柏完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
8秒前
orixero应助年轻就要气盛采纳,获得10
9秒前
violet完成签到,获得积分20
10秒前
充电宝应助健忘的雨安采纳,获得10
12秒前
dfggg发布了新的文献求助10
12秒前
饱满的问丝完成签到,获得积分10
13秒前
14秒前
大水完成签到 ,获得积分10
15秒前
15秒前
Akira完成签到,获得积分20
16秒前
隐形曼青应助是ok耶采纳,获得10
17秒前
18秒前
18秒前
11111发布了新的文献求助20
19秒前
大水发布了新的文献求助10
21秒前
21秒前
小蘑菇应助保持科研热情采纳,获得10
21秒前
所所应助蓦然采纳,获得10
22秒前
22秒前
爱科研的小蜗啊完成签到,获得积分10
23秒前
从容梦山发布了新的文献求助10
23秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
25秒前
luo完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848