Non-Destructive Detection of Tea Polyphenols in Fu Brick Tea Based on Hyperspectral Imaging and Improved PKO-SVR Method

高光谱成像 多酚 化学 人工智能 计算机科学 材料科学 复合材料 生物化学 抗氧化剂
作者
Junyao Gong,Gang Chen,Yuezhao Deng,Cheng Li,Kui Fang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (10): 1701-1701
标识
DOI:10.3390/agriculture14101701
摘要

Tea polyphenols (TPs) are a critical indicator for evaluating the quality of tea leaves and are esteemed for their beneficial effects. The non-destructive detection of this component is essential for enhancing precise control in tea production and improving product quality. This study developed an enhanced PKO-SVR (support vector regression based on the Pied Kingfisher Optimization Algorithm) model for rapidly and accurately detecting tea polyphenol content in Fu brick tea using hyperspectral reflectance data. During this experiment, chemical analysis determined the tea polyphenol content, while hyperspectral imaging captured the spectral data. Data preprocessing techniques were applied to reduce noise interference and improve the prediction model. Additionally, several other models, including K-nearest neighbor (KNN) regression, neural network regression (BP), support vector regression based on the sparrow algorithm (SSA-SVR), and support vector regression based on particle swarm optimization (PSO-SVR), were established for comparison. The experiment results demonstrated that the improved PKO-SVR model excelled in predicting the polyphenol content of Fu brick tea (R2 = 0.9152, RMSE = 0.5876, RPD = 3.4345 for the test set) and also exhibited a faster convergence rate. Therefore, the hyperspectral data combined with the PKO-SVR algorithm presented in this study proved effective for evaluating Fu brick tea’s polyphenol content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suki完成签到,获得积分10
刚刚
刚刚
asilamu发布了新的文献求助10
1秒前
iveuplife发布了新的文献求助10
1秒前
yyy完成签到,获得积分10
1秒前
哩鱼完成签到 ,获得积分10
2秒前
Yt完成签到,获得积分10
2秒前
3秒前
3秒前
hs完成签到,获得积分10
3秒前
3秒前
4秒前
xxcode完成签到,获得积分10
4秒前
俭朴的元绿完成签到,获得积分10
5秒前
5秒前
科研通AI5应助开朗灵寒采纳,获得10
5秒前
屿界完成签到,获得积分10
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
大力冰绿应助科研通管家采纳,获得10
6秒前
大力冰绿应助科研通管家采纳,获得10
6秒前
不安青牛应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
6秒前
Liuyuting1008完成签到,获得积分10
7秒前
7秒前
鸣笛应助bm采纳,获得10
7秒前
科研一霸发布了新的文献求助10
7秒前
江江发布了新的文献求助10
7秒前
冻结完成签到,获得积分10
8秒前
科研通AI2S应助榴莲奶黄包采纳,获得10
8秒前
sxx关闭了sxx文献求助
8秒前
务实孤丝发布了新的文献求助10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558727
求助须知:如何正确求助?哪些是违规求助? 3985597
关于积分的说明 12339453
捐赠科研通 3656084
什么是DOI,文献DOI怎么找? 2014170
邀请新用户注册赠送积分活动 1048980
科研通“疑难数据库(出版商)”最低求助积分说明 937375