Non-Destructive Detection of Tea Polyphenols in Fu Brick Tea Based on Hyperspectral Imaging and Improved PKO-SVR Method

高光谱成像 多酚 化学 人工智能 计算机科学 材料科学 复合材料 生物化学 抗氧化剂
作者
Junyao Gong,Gang Chen,Yuezhao Deng,Cheng Li,Kui Fang
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (10): 1701-1701
标识
DOI:10.3390/agriculture14101701
摘要

Tea polyphenols (TPs) are a critical indicator for evaluating the quality of tea leaves and are esteemed for their beneficial effects. The non-destructive detection of this component is essential for enhancing precise control in tea production and improving product quality. This study developed an enhanced PKO-SVR (support vector regression based on the Pied Kingfisher Optimization Algorithm) model for rapidly and accurately detecting tea polyphenol content in Fu brick tea using hyperspectral reflectance data. During this experiment, chemical analysis determined the tea polyphenol content, while hyperspectral imaging captured the spectral data. Data preprocessing techniques were applied to reduce noise interference and improve the prediction model. Additionally, several other models, including K-nearest neighbor (KNN) regression, neural network regression (BP), support vector regression based on the sparrow algorithm (SSA-SVR), and support vector regression based on particle swarm optimization (PSO-SVR), were established for comparison. The experiment results demonstrated that the improved PKO-SVR model excelled in predicting the polyphenol content of Fu brick tea (R2 = 0.9152, RMSE = 0.5876, RPD = 3.4345 for the test set) and also exhibited a faster convergence rate. Therefore, the hyperspectral data combined with the PKO-SVR algorithm presented in this study proved effective for evaluating Fu brick tea’s polyphenol content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子发布了新的文献求助10
刚刚
AU发布了新的文献求助10
刚刚
酷波er应助susan采纳,获得10
1秒前
卟茨卟茨完成签到,获得积分10
2秒前
小马甲应助Mingyue123采纳,获得10
2秒前
古月完成签到,获得积分10
3秒前
小马甲应助勤奋的从菡采纳,获得10
4秒前
小小喵发布了新的文献求助10
4秒前
4秒前
奥里给完成签到 ,获得积分10
5秒前
浅尝离白应助科研通管家采纳,获得30
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
sera发布了新的文献求助10
7秒前
8秒前
xiaoGuo完成签到,获得积分10
8秒前
科研通AI2S应助王九八采纳,获得10
9秒前
9秒前
1097完成签到 ,获得积分10
9秒前
燕子完成签到,获得积分10
9秒前
orixero应助wise111采纳,获得10
10秒前
12秒前
13秒前
英姑应助chenyunxia采纳,获得10
13秒前
13秒前
冷月芳华发布了新的文献求助10
14秒前
16秒前
烟花应助小镇青年采纳,获得10
17秒前
lijiajun发布了新的文献求助10
17秒前
清风荷影完成签到 ,获得积分10
18秒前
昨夜書完成签到 ,获得积分10
19秒前
19秒前
supermary发布了新的文献求助10
20秒前
20秒前
自然的书萱完成签到,获得积分10
21秒前
镜子完成签到,获得积分10
21秒前
21秒前
21秒前
DrD完成签到,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655