清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A-214 Evaluate LDL-C using NIH equation 2, Friedewald equation, and direct homogeneous measurement

同种类的 化学 热力学 物理
作者
Edward Faught,Hoda A. Hagrass
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:70 (Supplement_1)
标识
DOI:10.1093/clinchem/hvae106.212
摘要

Abstract Background It is essential to accurately assess Low-density lipoprotein cholesterol (LDL-C) levels, a key marker for cardiovascular disease often used for treatment recommendations. The Friedewald equation has been used for many years to calculate plasma LDL-C levels, but it has limitations. Therefore, before implementing the NIH equation, we compared LDL-C results from NIH Equation 2 to the Friedewald formula and then to Atellica direct homogeneous assay LDL-C results. Methods A retrospective study of 1200 randomly selected patients out of 53,258 data points pulled from the laboratory information (LIS) system between November 2021 and October 2023. The study evaluated triglycerides, LDL-C, total cholesterol, and HDL-C measurements. The LDL-C calculated using NIH equation 2 has been set in the LIS as a non-reportable test component since November 1, 2021. The results obtained from NIH equation 2 and Friedewald equation were compared. LDL-C levels were measured using an Atellica direct homogeneous assay for an additional 75 specimens. Deming regression analysis compared measured and calculated LDL-C using both formulae. Results The LDL-C calculated using the Friedewald equation has a mean of 106.1 mg/dL and SD 40.1 mg/dL, while the NIH equation has a mean of 108.5 mg/dL and SD 39.9 mg/dL. The average difference between both equations is 2.5 mg/dL, and there is a significant difference between both calculations using paired t-tests (p-value<0.0001). We first compared the calculated LDL-C derived from the Friedewald formula to the NIH equation 2. The regression analysis equation for the Friedewald formula was y = -2.7 + 1.001 X (r = 0.99). When the Triglyceride values <150 mg/dL (N=879), the average difference is 1.3, and the regression equation is -0.45+1.01X(r=0.99). However, when the Triglyceride value >= 150 mg/dL (N=321), the average bias is 5.4 mg/dL, and the regression equation is -11.2+1.05X(r=0.99). The Friedewald formula was compared to the measured LDL-C in 75 specimens; the regression analysis for the Friedewald formula was y = -19.6 + 1.06 X (r = 0.91, p-value <0.0001). The 75 measured LDL-C results were also compared with the NIH formula. The regression analysis of NIH LDL-C with measured LDL-C was y = -5.6 + 0.981 x (r = 0.90, p-value = 0.0002). Both formulae showed a linear relationship against measured LDL-C. The NIH formula outperformed the Friedewald formula; bias difference -7.8(-6.8%) compared to the Friedwald equation bias -12.9(-12.0%). If the NIH equation had been used during this period, an additional 1,116 patients would have had LDL-C results. This is because the Friedewald equation should not be used if the triglyceride value is above 400 mg/dL. Out of the additional patients, 513 (46%) had a high LDL (>100 mg/dL). Conclusions The NIH formula performed better than the Friedewald formula, with a less negative bias when both calculations were compared to direct homogenous measurement. The average difference between the two formulas showed the lowest value when triglyceride < 150 mg/dL. Moving to NIH equation 2 will benefit our population as we had 2% of our patients in the past two years have triglyceride >400 mg/dL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mmyhn发布了新的文献求助10
6秒前
12秒前
xun完成签到,获得积分20
13秒前
zijingsy完成签到 ,获得积分10
17秒前
26347完成签到 ,获得积分10
27秒前
meijuan1210完成签到 ,获得积分10
29秒前
30秒前
Cole驳回了SciGPT应助
30秒前
天边的云彩完成签到 ,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
山山而川完成签到 ,获得积分10
1分钟前
courage完成签到,获得积分10
1分钟前
科研通AI2S应助jlwang采纳,获得10
1分钟前
锋feng完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分10
2分钟前
2分钟前
悟川完成签到 ,获得积分10
2分钟前
liuliu完成签到,获得积分10
3分钟前
3分钟前
Emperor完成签到 ,获得积分0
3分钟前
A,w携念e行ོ完成签到,获得积分10
3分钟前
Cole发布了新的文献求助10
3分钟前
风信子完成签到,获得积分10
3分钟前
Aaman完成签到,获得积分10
4分钟前
Zrysaa完成签到,获得积分10
4分钟前
跳跃的鹏飞完成签到 ,获得积分10
4分钟前
lovexa完成签到,获得积分10
4分钟前
wxyinhefeng完成签到 ,获得积分10
4分钟前
a46539749完成签到 ,获得积分10
4分钟前
leena完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
海盐气泡水完成签到,获得积分10
5分钟前
golfgold完成签到,获得积分10
5分钟前
zhdjj完成签到 ,获得积分10
5分钟前
5分钟前
lt0217发布了新的文献求助10
6分钟前
jlwang完成签到,获得积分10
6分钟前
上下完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450460
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003759
捐赠科研通 2734604
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477