Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

医学 肥厚性心肌病 稳态自由进动成像 自编码 法布里病 曼惠特尼U检验 人工智能 内科学 磁共振成像 人口 心脏病学 疾病 放射科 深度学习 计算机科学 环境卫生
作者
Athira Jacob,Teodora Chițiboi,U. Joseph Schoepf,Puneet Sharma,Jonathan Aldinger,Charles Baker,Carla Lautenschlager,Tilman Emrich,Ákos Varga‐Szemes
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29619
摘要

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects ( N = 568), and patients with DCM ( N = 151), HCM ( N = 177), and IHD ( N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
科研通AI5应助无悔呀采纳,获得10
3秒前
3秒前
littlewhite关注了科研通微信公众号
4秒前
4秒前
零点起步完成签到,获得积分10
4秒前
慕青应助大力的含卉采纳,获得10
4秒前
善良过客发布了新的文献求助10
5秒前
5秒前
5秒前
dildil发布了新的文献求助10
5秒前
5秒前
hu970发布了新的文献求助10
6秒前
6秒前
王思鲁发布了新的文献求助30
6秒前
七个小矮人完成签到,获得积分10
7秒前
Aria完成签到,获得积分10
7秒前
感性的安露应助结实雪卉采纳,获得20
8秒前
零点起步发布了新的文献求助10
9秒前
故意的傲玉应助Ll采纳,获得10
9秒前
斯文败类应助xiuxiu_27采纳,获得10
9秒前
胖子完成签到,获得积分10
9秒前
王巧巧完成签到,获得积分10
9秒前
tangsuyun发布了新的文献求助10
10秒前
祝顺遂发布了新的文献求助10
10秒前
Seven发布了新的文献求助10
10秒前
土拨鼠完成签到 ,获得积分10
11秒前
邢夏之发布了新的文献求助10
11秒前
漂亮芹菜完成签到,获得积分10
11秒前
ZXH完成签到,获得积分10
11秒前
Evelyn完成签到 ,获得积分10
11秒前
习习应助sb采纳,获得10
12秒前
12秒前
12秒前
斯文败类应助liu采纳,获得10
13秒前
13秒前
gy发布了新的文献求助10
13秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759