Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

医学 肥厚性心肌病 稳态自由进动成像 自编码 法布里病 曼惠特尼U检验 人工智能 内科学 磁共振成像 人口 心脏病学 疾病 放射科 深度学习 计算机科学 环境卫生
作者
Athira Jacob,Teodora Chițiboi,U. Joseph Schoepf,Puneet Sharma,Jonathan Aldinger,Charles Baker,Carla Lautenschlager,Tilman Emrich,Ákos Varga‐Szemes
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:61 (4): 1635-1647 被引量:5
标识
DOI:10.1002/jmri.29619
摘要

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects ( N = 568), and patients with DCM ( N = 151), HCM ( N = 177), and IHD ( N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
幸福妙柏完成签到 ,获得积分10
4秒前
倾心悦目应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
花落无声完成签到 ,获得积分10
7秒前
湘崽丫完成签到 ,获得积分10
8秒前
严伟完成签到 ,获得积分10
9秒前
薄荷心完成签到 ,获得积分10
10秒前
123456完成签到 ,获得积分10
12秒前
ranan完成签到,获得积分10
13秒前
znn完成签到 ,获得积分10
18秒前
gaogaogao完成签到,获得积分10
19秒前
Lucas应助苹果尔柳采纳,获得10
21秒前
yinyin完成签到 ,获得积分10
22秒前
pp完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
liuliqiong完成签到,获得积分10
24秒前
391X小king发布了新的文献求助10
27秒前
限量版小祸害完成签到 ,获得积分10
28秒前
Panini完成签到 ,获得积分10
29秒前
收集快乐完成签到 ,获得积分10
30秒前
yutingemail完成签到 ,获得积分10
30秒前
温暖完成签到 ,获得积分10
32秒前
热情爆米花完成签到 ,获得积分10
35秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
萧萧完成签到,获得积分0
36秒前
nicky完成签到 ,获得积分10
36秒前
小果完成签到 ,获得积分10
37秒前
汉堡包应助Able采纳,获得10
40秒前
尹基忠发布了新的文献求助10
41秒前
cadcae完成签到,获得积分20
43秒前
合适靖儿完成签到 ,获得积分10
44秒前
蕾姐完成签到,获得积分10
44秒前
52秒前
anzhe完成签到,获得积分10
52秒前
CallMeIris完成签到,获得积分10
56秒前
苹果尔柳发布了新的文献求助10
58秒前
量子星尘发布了新的文献求助10
58秒前
尹基忠完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645089
求助须知:如何正确求助?哪些是违规求助? 4767716
关于积分的说明 15026372
捐赠科研通 4803503
什么是DOI,文献DOI怎么找? 2568340
邀请新用户注册赠送积分活动 1525697
关于科研通互助平台的介绍 1485301