清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

医学 肥厚性心肌病 稳态自由进动成像 自编码 法布里病 曼惠特尼U检验 人工智能 内科学 磁共振成像 人口 心脏病学 疾病 放射科 深度学习 计算机科学 环境卫生
作者
Athira Jacob,Teodora Chițiboi,U. Joseph Schoepf,Puneet Sharma,Jonathan Aldinger,Charles Baker,Carla Lautenschlager,Tilman Emrich,Ákos Varga‐Szemes
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:1
标识
DOI:10.1002/jmri.29619
摘要

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects ( N = 568), and patients with DCM ( N = 151), HCM ( N = 177), and IHD ( N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
4秒前
牛奶开水完成签到 ,获得积分10
27秒前
褚明雪完成签到,获得积分10
28秒前
42秒前
陈无敌完成签到 ,获得积分10
47秒前
1分钟前
1分钟前
CipherSage应助喝奶茶睡不着采纳,获得10
1分钟前
1分钟前
2分钟前
细心的语蓉完成签到,获得积分10
2分钟前
完美耦合发布了新的文献求助50
2分钟前
2分钟前
清爽明辉发布了新的文献求助10
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
鹏826完成签到 ,获得积分10
3分钟前
九九完成签到,获得积分10
3分钟前
1234567完成签到,获得积分10
4分钟前
英姑应助科研通管家采纳,获得10
6分钟前
SciGPT应助科研通管家采纳,获得10
6分钟前
carrot完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
6分钟前
科研搬运工完成签到,获得积分10
7分钟前
chi完成签到 ,获得积分10
8分钟前
666完成签到 ,获得积分10
8分钟前
heolmes完成签到 ,获得积分10
9分钟前
经纲完成签到 ,获得积分0
9分钟前
xiao完成签到 ,获得积分10
9分钟前
9分钟前
西红柿不吃皮完成签到 ,获得积分10
9分钟前
半岛岛发布了新的文献求助10
9分钟前
jyy应助科研通管家采纳,获得10
10分钟前
和谐的夏岚完成签到 ,获得积分10
10分钟前
负责冰海完成签到 ,获得积分10
10分钟前
11分钟前
11分钟前
传奇3应助喝奶茶睡不着采纳,获得30
11分钟前
HHW完成签到,获得积分10
11分钟前
火箭完成签到,获得积分10
11分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790490
关于积分的说明 7795394
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176