已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep‐Learning‐Based Disease Classification in Patients Undergoing Cine Cardiac MRI

医学 肥厚性心肌病 稳态自由进动成像 自编码 法布里病 曼惠特尼U检验 人工智能 内科学 磁共振成像 人口 心脏病学 疾病 放射科 深度学习 计算机科学 环境卫生
作者
Athira Jacob,Teodora Chițiboi,U. Joseph Schoepf,Puneet Sharma,Jonathan Aldinger,Charles Baker,Carla Lautenschlager,Tilman Emrich,Ákos Varga‐Szemes
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29619
摘要

Background Automated approaches may allow for fast, reproducible clinical assessment of cardiovascular diseases from MRI. Purpose To develop an MRI‐based deep learning (DL) disease classification algorithm to distinguish among normal subjects (NORM), patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and ischemic heart disease (IHD). Study Type Retrospective. Population A total of 1337 subjects (55% female), comprising normal subjects ( N = 568), and patients with DCM ( N = 151), HCM ( N = 177), and IHD ( N = 441). Field Strength/Sequence Balanced steady‐state free precession cine sequence at 1.5/3.0 T. Assessment Bi‐ventricular morphological and functional features and global and segmental left ventricular strain features were automatically extracted from short‐ and long‐axis cine images. Variational autoencoder models were trained on the extracted features and compared against consensus disease label provided by two expert readers (13 and 14 years of experience). Adding unlabeled, normal data to the training was explored to increase specificity of NORM class. Statistical Tests Tenfold cross‐validation for model development; mean, standard deviation (SD) for measurements; classification metrics: area under the curve (AUC), confusion matrix, accuracy, specificity, precision, recall; 95% confidence intervals; Mann–Whitney U test for significance. Results AUCs of 0.952 for NORM, 0.881 for DCM, 0.908 for HCM, and 0.856 for IHD and overall accuracy of 0.778 were obtained, with specificity of 0.908 for the NORM class using both SAX and LAX features. Longitudinal strain features slightly improved classification metrics by 0.001 to 0.03 points, except for HCM‐AUC. Differences in accuracy, metrics for NORM class and HCM‐AUC were statistically significant. Cotraining using unlabeled data increased the specificity for the NORM class to 0.961. Data Conclusion Cardiac function features automatically extracted from cine MRI have potential to be used for disease classification, especially for normal‐abnormal classification. Feature analyses showed that strain features were important for disease labeling. Cotraining using unlabeled data may help to increase specificity for normal‐abnormal classification. Level of Evidence 3 Technical Efficacy Stage 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhou完成签到,获得积分10
刚刚
烟花应助wuhao88采纳,获得10
1秒前
3秒前
沉静的时光完成签到 ,获得积分10
3秒前
4秒前
叶子的叶完成签到,获得积分10
4秒前
zhanglin完成签到,获得积分10
5秒前
xiaofeiyan发布了新的文献求助10
6秒前
852应助ronnie采纳,获得10
7秒前
依依发布了新的文献求助10
8秒前
8秒前
10秒前
方囧发布了新的文献求助10
10秒前
六初完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
搞怪莫茗应助DK采纳,获得10
16秒前
小马甲应助郭月采纳,获得10
16秒前
张祖成发布了新的文献求助10
17秒前
dd完成签到,获得积分10
18秒前
18秒前
ronnie发布了新的文献求助10
19秒前
19秒前
小确幸发布了新的文献求助10
21秒前
21秒前
aikey发布了新的文献求助10
21秒前
21秒前
袖贤发布了新的文献求助30
24秒前
小药丸完成签到,获得积分10
25秒前
25秒前
烟花应助Flanker采纳,获得10
27秒前
27秒前
乐叻完成签到,获得积分10
32秒前
昵称666发布了新的文献求助30
33秒前
半眠日记发布了新的文献求助10
33秒前
34秒前
35秒前
整齐凝竹完成签到 ,获得积分10
36秒前
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172