Know your orientation: A viewpoint-aware framework for polyp segmentation

判别式 人工智能 分割 计算机科学 计算机视觉 结肠镜检查 编码(集合论) 模式识别(心理学) 医学 结直肠癌 癌症 内科学 集合(抽象数据类型) 程序设计语言
作者
Linghan Cai,Lijiang Chen,Jianhao Huang,Yifeng Wang,Yongbing Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103288-103288 被引量:2
标识
DOI:10.1016/j.media.2024.103288
摘要

Automatic polyp segmentation in endoscopic images is critical for the early diagnosis of colorectal cancer. Despite the availability of powerful segmentation models, two challenges still impede the accuracy of polyp segmentation algorithms. Firstly, during a colonoscopy, physicians frequently adjust the orientation of the colonoscope tip to capture underlying lesions, resulting in viewpoint changes in the colonoscopy images. These variations increase the diversity of polyp visual appearance, posing a challenge for learning robust polyp features. Secondly, polyps often exhibit properties similar to the surrounding tissues, leading to indistinct polyp boundaries. To address these problems, we propose a viewpoint-aware framework named VANet for precise polyp segmentation. In VANet, polyps are emphasized as a discriminative feature and thus can be localized by class activation maps in a viewpoint classification process. With these polyp locations, we design a viewpoint-aware Transformer (VAFormer) to alleviate the erosion of attention by the surrounding tissues, thereby inducing better polyp representations. Additionally, to enhance the polyp boundary perception of the network, we develop a boundary-aware Transformer (BAFormer) to encourage self-attention towards uncertain regions. As a consequence, the combination of the two modules is capable of calibrating predictions and significantly improving polyp segmentation performance. Extensive experiments on seven public datasets across six metrics demonstrate the state-of-the-art results of our method, and VANet can handle colonoscopy images in real-world scenarios effectively. The source code is available at https://github.com/1024803482/Viewpoint-Aware-Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑行恶完成签到,获得积分10
1秒前
1秒前
2秒前
小二郎应助哭泣的犀牛采纳,获得10
2秒前
2秒前
3秒前
科研通AI5应助一只杨采纳,获得10
3秒前
湖蓝色发布了新的文献求助10
6秒前
爱听歌的白开水完成签到 ,获得积分20
7秒前
7秒前
7秒前
科研通AI5应助故意的烧鹅采纳,获得10
8秒前
没什么想说的完成签到 ,获得积分10
9秒前
10秒前
11秒前
王情水发布了新的文献求助10
13秒前
13秒前
湖蓝色完成签到,获得积分10
15秒前
lynh0508发布了新的文献求助10
15秒前
南逸然完成签到,获得积分10
19秒前
19秒前
充电宝应助研友_Z7Xdl8采纳,获得10
20秒前
年轻的如果完成签到,获得积分10
22秒前
怕黑宛完成签到,获得积分10
22秒前
Akim应助lynh0508采纳,获得10
23秒前
24秒前
fan完成签到,获得积分10
24秒前
ferry完成签到,获得积分10
26秒前
所所应助xf采纳,获得10
26秒前
28秒前
CipherSage应助怕黑宛采纳,获得10
30秒前
JamesPei应助slx采纳,获得10
30秒前
嘻嘻完成签到,获得积分10
34秒前
34秒前
花骨头完成签到,获得积分10
35秒前
35秒前
36秒前
CipherSage应助太阳cy采纳,获得10
36秒前
38秒前
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673961
求助须知:如何正确求助?哪些是违规求助? 3229371
关于积分的说明 9785618
捐赠科研通 2939954
什么是DOI,文献DOI怎么找? 1611546
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344