HGLA: Biomolecular Interaction Prediction based on Mixed High-Order Graph Convolution with Filter Network via LSTM and Channel Attention

图形 卷积(计算机科学) 计算机科学 频道(广播) 滤波器(信号处理) 算法 理论计算机科学 数学 人工智能 计算机网络 计算机视觉 人工神经网络
作者
Zhen Zhang,Zhaohong Deng,Ruibo Li,Te Zhang,Qiongdan Lou,Kup‐Sze Choi,Shitong Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcbb.2024.3434399
摘要

Predicting biomolecular interactions is significant for understanding biological systems. Most existing methods for link prediction are based on graph convolution. Although graph convolution methods are advantageous in extracting structure information of biomolecular interactions, two key challenges still remain. One is how to consider both the immediate and highorder neighbors. Another is how to reduce noise when aggregating high-order neighbors. To address these challenges, we propose a novel method, called mixed high-order graph convolution with filter network via LSTM and channel attention (HGLA), to predict biomolecular interactions. Firstly, the basic and high-order features are extracted respectively through the traditional graph convolutional network (GCN) and the two-layer Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (MixHop). Secondly, these features are mixed and input into the filter network composed of LayerNorm, SENet and LSTM to generate filtered features, which are concatenated and used for link prediction. The advantages of HGLA are: 1) HGLA processes high-order features separately, rather than simply concatenating them; 2) HGLA better balances the basic features and high-order features; 3) HGLA effectively filters the noise from high-order neighbors. It outperforms state-ofthe-art networks on four benchmark datasets. The codes are available at https://github.com/zznb123/HGLA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iking666完成签到,获得积分10
刚刚
孤灯剑客完成签到,获得积分10
2秒前
4秒前
11220发布了新的文献求助10
4秒前
4秒前
小小Li发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
Firo完成签到,获得积分10
8秒前
结实乐荷完成签到,获得积分10
8秒前
8秒前
zeannezg发布了新的文献求助10
9秒前
jjn完成签到,获得积分10
9秒前
药膳干发布了新的文献求助10
11秒前
碧蓝曼冬发布了新的文献求助10
11秒前
彭于晏应助默默寒珊采纳,获得10
11秒前
11秒前
爆米花应助明理夏槐采纳,获得10
12秒前
13秒前
万能图书馆应助酷酷梦旋采纳,获得10
14秒前
15秒前
tjzbw完成签到,获得积分10
15秒前
李健应助ncycg采纳,获得10
15秒前
15秒前
HELIXIA发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
qwe发布了新的文献求助10
20秒前
21秒前
sll完成签到 ,获得积分10
21秒前
CWY关闭了CWY文献求助
21秒前
li完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
24秒前
明理夏槐发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675201
求助须知:如何正确求助?哪些是违规求助? 4943911
关于积分的说明 15151850
捐赠科研通 4834390
什么是DOI,文献DOI怎么找? 2589443
邀请新用户注册赠送积分活动 1543079
关于科研通互助平台的介绍 1501039