HGLA: Biomolecular Interaction Prediction based on Mixed High-Order Graph Convolution with Filter Network via LSTM and Channel Attention

图形 卷积(计算机科学) 计算机科学 频道(广播) 滤波器(信号处理) 算法 理论计算机科学 数学 人工智能 计算机网络 计算机视觉 人工神经网络
作者
Zhen Zhang,Zhaohong Deng,Ruibo Li,Te Zhang,Qiongdan Lou,Kup‐Sze Choi,Shitong Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tcbb.2024.3434399
摘要

Predicting biomolecular interactions is significant for understanding biological systems. Most existing methods for link prediction are based on graph convolution. Although graph convolution methods are advantageous in extracting structure information of biomolecular interactions, two key challenges still remain. One is how to consider both the immediate and highorder neighbors. Another is how to reduce noise when aggregating high-order neighbors. To address these challenges, we propose a novel method, called mixed high-order graph convolution with filter network via LSTM and channel attention (HGLA), to predict biomolecular interactions. Firstly, the basic and high-order features are extracted respectively through the traditional graph convolutional network (GCN) and the two-layer Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing (MixHop). Secondly, these features are mixed and input into the filter network composed of LayerNorm, SENet and LSTM to generate filtered features, which are concatenated and used for link prediction. The advantages of HGLA are: 1) HGLA processes high-order features separately, rather than simply concatenating them; 2) HGLA better balances the basic features and high-order features; 3) HGLA effectively filters the noise from high-order neighbors. It outperforms state-ofthe-art networks on four benchmark datasets. The codes are available at https://github.com/zznb123/HGLA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛鸢发布了新的文献求助10
1秒前
立马毕业完成签到,获得积分10
1秒前
卫尔摩斯发布了新的文献求助10
1秒前
BINBIN完成签到 ,获得积分10
1秒前
hfgeyt完成签到,获得积分10
2秒前
sakurai应助背后的诺言采纳,获得10
2秒前
湘华发布了新的文献求助10
3秒前
Jenny应助lan采纳,获得10
3秒前
单薄的飞松完成签到 ,获得积分10
3秒前
醒醒发布了新的文献求助10
3秒前
4秒前
恨安完成签到,获得积分10
4秒前
jijahui发布了新的文献求助30
4秒前
南瓜咸杏发布了新的文献求助30
4秒前
5秒前
调研昵称发布了新的文献求助50
5秒前
6秒前
白白不读书完成签到 ,获得积分10
6秒前
7秒前
AIA7发布了新的文献求助10
7秒前
7秒前
7秒前
夏橪完成签到,获得积分10
7秒前
7秒前
dddddd发布了新的文献求助10
8秒前
什么也难不倒我完成签到 ,获得积分10
8秒前
8秒前
立马毕业发布了新的文献求助10
8秒前
喜悦的尔阳完成签到,获得积分10
9秒前
9秒前
现实的白开水完成签到,获得积分10
9秒前
9秒前
SHDeathlock发布了新的文献求助50
9秒前
lunan发布了新的文献求助10
10秒前
10秒前
酷炫过客完成签到,获得积分20
10秒前
11秒前
12秒前
12秒前
华仔应助xiaoziyi666采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762