Making knowledge graphs work for smart manufacturing: Research topics, applications and prospects

语境化 背景(考古学) 数据科学 知识管理 计算机科学 模块化设计 工程类 口译(哲学) 古生物学 生物 程序设计语言 操作系统
作者
Y Wan,Meilin Liu,Zhenyuan Chen,Chong Chen,Xinyu Li,Hu Fu,Michael Packianather
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:76: 103-132
标识
DOI:10.1016/j.jmsy.2024.07.009
摘要

Smart manufacturing (SM) confronts several challenges inherently suited to knowledge graphs (KGs) capabilities. The first key challenge lies in the synthesis of complex and varied data surrounding the manufacturing context, which demands advanced semantic analysis and inference capabilities. The second main limitation is the contextualization of manufacturing systems and the exploitation of manufacturing domain knowledge, which requires a dynamic and holistic representation of knowledge. The last major obstacle arises from the facilitation of intricate decision-making processes towards correlated manufacturing ecosystems, which benefit from interconnected data structures that KGs excel at organizing. However, the existing survey studies concentrated on distinct facets of SM and offered isolated insights into KG applications while overlooking the interconnections between various KG technologies and their application across multiple domains. What specific role KGs should play in SM towards the aforementioned challenges, how to effectively harness KGs for these challenges, and the essential topics and methodologies required to make KGs functional remain underexplored. To explore the potential of KGs in SM, this study adopts a systematic approach to investigate, evaluate, and analyse current research on KGs, identifying core advancements and their implications for future manufacturing practices. Firstly, cutting-edge developments in the challenge-driven roles of KGs and KG techniques are identified, from knowledge extraction and mining to techniques for KG construction and updates, further extending to KG embedding, fusion, and reasoning—central to driving SM ecosystems. Specifically, the KG technologies for SM are depicted holistically, emphasizing the interplay of diverse KG techniques with a comprehensive framework. Subsequently, this foundation outlines and discusses key application scenarios of KGs from engineering design to predictive maintenance, covering the main representative stages of the manufacturing life cycle. Lastly, this study explores the intricate interplay of the practical challenges and advantages of KGs in manufacturing systems, pointing to emerging research avenues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助尼i采纳,获得10
2秒前
明理囧完成签到 ,获得积分10
2秒前
echo发布了新的文献求助10
2秒前
Dy发布了新的文献求助10
3秒前
zhangyu完成签到,获得积分10
4秒前
彭于晏应助林钰浩采纳,获得10
5秒前
jessie完成签到,获得积分10
5秒前
小懒发布了新的文献求助10
9秒前
xmyang完成签到,获得积分10
9秒前
Self-made完成签到,获得积分10
9秒前
赘婿应助复杂晓灵采纳,获得10
9秒前
echo完成签到,获得积分10
11秒前
12秒前
林钰浩发布了新的文献求助10
17秒前
17秒前
18秒前
FashionBoy应助111采纳,获得10
18秒前
故意的乐菱完成签到,获得积分10
19秒前
20秒前
步步完成签到 ,获得积分10
20秒前
岁峰柒完成签到 ,获得积分10
20秒前
寒子川发布了新的文献求助10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
左丘白桃应助科研通管家采纳,获得20
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
小希完成签到,获得积分10
24秒前
ff发布了新的文献求助10
25秒前
hcy发布了新的文献求助10
25秒前
26秒前
28秒前
wen完成签到 ,获得积分10
30秒前
Owen应助科研鬼才采纳,获得10
32秒前
33秒前
耶椰耶完成签到 ,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3676688
求助须知:如何正确求助?哪些是违规求助? 3230828
关于积分的说明 9792657
捐赠科研通 2941911
什么是DOI,文献DOI怎么找? 1612894
邀请新用户注册赠送积分活动 761348
科研通“疑难数据库(出版商)”最低求助积分说明 736816