Large Language Models for Human-like Autonomous Driving: A Survey

计算机科学
作者
Yun Li,Kai Katsumata,Ehsan Javanmardi,Manabu Tsukada
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.19280
摘要

Large Language Models (LLMs), AI models trained on massive text corpora with remarkable language understanding and generation capabilities, are transforming the field of Autonomous Driving (AD). As AD systems evolve from rule-based and optimization-based methods to learning-based techniques like deep reinforcement learning, they are now poised to embrace a third and more advanced category: knowledge-based AD empowered by LLMs. This shift promises to bring AD closer to human-like AD. However, integrating LLMs into AD systems poses challenges in real-time inference, safety assurance, and deployment costs. This survey provides a comprehensive and critical review of recent progress in leveraging LLMs for AD, focusing on their applications in modular AD pipelines and end-to-end AD systems. We highlight key advancements, identify pressing challenges, and propose promising research directions to bridge the gap between LLMs and AD, thereby facilitating the development of more human-like AD systems. The survey first introduces LLMs' key features and common training schemes, then delves into their applications in modular AD pipelines and end-to-end AD, respectively, followed by discussions on open challenges and future directions. Through this in-depth analysis, we aim to provide insights and inspiration for researchers and practitioners working at the intersection of AI and autonomous vehicles, ultimately contributing to safer, smarter, and more human-centric AD technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haha发布了新的文献求助10
1秒前
现代的妍发布了新的文献求助10
1秒前
活力的珊完成签到 ,获得积分10
1秒前
完美世界应助成就双双采纳,获得10
2秒前
1234发布了新的文献求助30
3秒前
4秒前
6秒前
8秒前
顺利萃完成签到,获得积分20
8秒前
学术渣完成签到,获得积分10
9秒前
9秒前
11秒前
小李的李发布了新的文献求助10
11秒前
bakbak完成签到,获得积分10
11秒前
12秒前
abx完成签到,获得积分10
12秒前
迪巴拉关注了科研通微信公众号
13秒前
orixero应助健壮的尔烟采纳,获得10
13秒前
至乐无乐完成签到 ,获得积分10
13秒前
chi发布了新的文献求助10
13秒前
14秒前
14秒前
SYLH应助现代的妍采纳,获得10
14秒前
英俊的铭应助隆东强采纳,获得10
14秒前
14秒前
江风海韵完成签到,获得积分10
16秒前
16秒前
hiou发布了新的文献求助30
18秒前
斯文败类应助77采纳,获得10
18秒前
阿斯蒂和琴酒完成签到 ,获得积分10
19秒前
20秒前
20秒前
倪倪完成签到,获得积分20
21秒前
文章哭哭发完成签到,获得积分10
22秒前
wuaaaaa_L发布了新的文献求助10
23秒前
成就双双发布了新的文献求助10
23秒前
24秒前
咕嘟发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
The Finite Element Method Its Basis and Fundamentals 2000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752811
求助须知:如何正确求助?哪些是违规求助? 3296371
关于积分的说明 10093570
捐赠科研通 3011229
什么是DOI,文献DOI怎么找? 1653678
邀请新用户注册赠送积分活动 788339
科研通“疑难数据库(出版商)”最低求助积分说明 752809