亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultra‐Strong Protein‐Based Hydrogels via Promoting Intermolecular Entanglement of the Amorphous Region

自愈水凝胶 无定形固体 材料科学 聚合物 生物相容性 纳米技术 丝素 高分子 分子间力 分子 丝绸 化学工程 复合材料 结晶学 化学 高分子化学 有机化学 生物化学 工程类 冶金
作者
Yu Fu,Qinrui Lin,Ruoqi Lan,Zhengzhong Shao
出处
期刊:Small [Wiley]
被引量:9
标识
DOI:10.1002/smll.202403376
摘要

Proteins are classified as biopolymers which share similar structural features with semi-crystalline polymers. Although their unique biocompatibility facilitates the universal applications of protein-based hydrogels in the biomedical field, the mechanical performances of protein-based hydrogels fall short of practical requirements. Conventional strategies for enhancing mechanical properties focus on forming regularly folded secondary structures as analogs of crystalline regions. This concept is based on proteins as the analogy of semi-crystalline polymers, in which crystalline regions profoundly contribute to the mechanical performances. Even though the contribution of the amorphous region is equally weighted for semi-crystalline polymers, their capacity to improve the mechanical performances of protein-based structures is still undervalued. Herein, the potential of promoting the mechanical performances is explored by controlling the state of amorphous regions in protein-based hydrogels. A fibril protein is chosen, regenerated silk fibroin (RSF), as a model molecule for its similar viscoelasticity with a semi-crystalline polymer. The amorphous regions in the RSF hydrogels are transformed from extended to entangled states through a double-crosslinking method. The formation of entanglement integrates new physically crosslinked points for remarkable improvement in mechanical performances. A robust hydrogel is not only developed but also intended to provide new insights into the structural-property relationship of protein-based hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
38秒前
_ban发布了新的文献求助10
43秒前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
violet完成签到 ,获得积分10
1分钟前
jason完成签到,获得积分0
3分钟前
zhao完成签到 ,获得积分0
4分钟前
席江海完成签到,获得积分0
5分钟前
kuoping完成签到,获得积分0
5分钟前
Kamalika发布了新的文献求助200
5分钟前
orixero应助张艺雯采纳,获得10
5分钟前
6分钟前
张艺雯发布了新的文献求助10
6分钟前
张艺雯完成签到,获得积分20
6分钟前
LU应助科研通管家采纳,获得10
7分钟前
ttimmy完成签到,获得积分10
7分钟前
科研通AI6应助与水皆水采纳,获得10
8分钟前
Kamalika完成签到,获得积分10
9分钟前
傻瓜完成签到 ,获得积分10
9分钟前
9分钟前
_ban完成签到 ,获得积分10
9分钟前
9分钟前
neimy完成签到,获得积分20
10分钟前
neimy发布了新的文献求助30
10分钟前
yc完成签到 ,获得积分10
10分钟前
与水皆水发布了新的文献求助10
10分钟前
领导范儿应助张艺雯采纳,获得10
10分钟前
11分钟前
11分钟前
张艺雯发布了新的文献求助10
11分钟前
夏鹿完成签到,获得积分10
11分钟前
小夜子完成签到 ,获得积分10
12分钟前
12分钟前
LP829发布了新的文献求助10
12分钟前
13分钟前
Rebeccaiscute完成签到 ,获得积分10
13分钟前
13分钟前
LP829发布了新的文献求助10
14分钟前
14分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233351
求助须知:如何正确求助?哪些是违规求助? 4402320
关于积分的说明 13699874
捐赠科研通 4269040
什么是DOI,文献DOI怎么找? 2342892
邀请新用户注册赠送积分活动 1339929
关于科研通互助平台的介绍 1296893