Branched hybridization chain reaction and tetrahedral DNA-based trivalent aptamer powered SERS sensor for ultra-highly sensitive detection of cancer-derived exosomes

适体 DNA 微泡 化学 纳米技术 癌细胞 癌症 生物传感器 癌症生物标志物 纳米颗粒 材料科学 分子生物学 生物 小RNA 生物化学 基因 遗传学
作者
Xinyu Liu,Jingjing Zhang,Zeyan Chen,Xiyu He,Chenlong Yan,Huiming Lv,Zhilong Chen,Ying Liu,Lianhui Wang,Chunyuan Song
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:267: 116737-116737 被引量:3
标识
DOI:10.1016/j.bios.2024.116737
摘要

Exosomes have emerged as a promising noninvasive biomarker for early cancer diagnosis due to their ability to carry specific bioinformation related to cancer cells. However, accurate detection of trace amount of cancer-derived exosomes in complex blood remains a significant challenge. Herein, an ultra-highly sensitive SERS sensor, powered by the branched hybridization chain reaction (bHCR) and tetrahedral DNA-based trivalent aptamer (triApt-TDN), has been proposed for precise detection of cancer-derived exosomes. Taking gastric cancer SGC-7901 cells-derived exosomes as a test model, the triApt-TDNs were constructed by conjugating aptamers specific to mucin 1 (MUC1) protein with tetrahedral DNAs and subsequently immobilized on the surface of silver nanorods (AgNRs) arrays to create SERS-active sensing chips capable of specifically capturing exosomes overexpressing MUC1 proteins. The bHCR was further initiated by the trigger aptamers (tgApts) bound to exosomes, and as a result the SERS tags were assembled into AuNP network structures with abundant SERS hotspots. By optimizing the sensing conditions, the SERS sensor showed good performance in ultra-highly sensitive detection of target exosomes within 60 min detection time, with a broad response ranging of 1.44 to 1.44 × 10
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷心菜投手完成签到,获得积分10
刚刚
yang_keai完成签到,获得积分10
刚刚
2秒前
zz发布了新的文献求助50
2秒前
博博大佬完成签到 ,获得积分10
6秒前
英俊的铭应助runtang采纳,获得10
7秒前
剑指东方是为谁应助任康采纳,获得10
7秒前
SOL应助任康采纳,获得10
7秒前
硝基发布了新的文献求助10
8秒前
巧蕊完成签到,获得积分20
8秒前
qq完成签到,获得积分10
9秒前
wasiwan完成签到,获得积分10
9秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
Hollen完成签到 ,获得积分10
11秒前
bk2020113458完成签到,获得积分10
12秒前
勿忘心安应助朴素剑心采纳,获得10
13秒前
搞怪的易槐完成签到,获得积分10
14秒前
14秒前
bitter完成签到,获得积分10
15秒前
乐乐应助turbo采纳,获得10
17秒前
科研通AI5应助王静采纳,获得10
18秒前
任康完成签到,获得积分20
18秒前
zyj完成签到 ,获得积分10
19秒前
打打应助科研通管家采纳,获得20
19秒前
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
无花果应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
duoduo完成签到,获得积分10
20秒前
今后应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
21秒前
臭小子完成签到,获得积分10
21秒前
22秒前
打打应助硝基采纳,获得10
22秒前
wanli完成签到,获得积分10
22秒前
22秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782