Deep learning insights into spatial patterns of stable isotopes in Iran’s precipitation: a novel approach to climatological mapping

降水 稳定同位素比值 同位素 反距离权重法 加权 采样(信号处理) 环境科学 人工神经网络 气候学 计算机科学 气象学 机器学习 统计 多元插值 地质学 数学 地理 物理 医学 滤波器(信号处理) 量子力学 计算机视觉 双线性插值 放射科
作者
Mojtaba Heydarizad,Rogert Sorí,Masoud Minaei,Hamid Ghalibaf Mohammadabadi,Elham Mahdipour
出处
期刊:Isotopes in Environmental and Health Studies [Taylor & Francis]
卷期号:60 (4): 380-399 被引量:2
标识
DOI:10.1080/10256016.2024.2396302
摘要

Stable isotope techniques are precise methods for studying various aspects of hydrology, such as precipitation characteristics. However, understanding the variations in the stable isotope content in precipitation is challenging in Iran due to numerous climatic and geographic factors. To address this, forty-two precipitation sampling stations were selected across Iran to assess the fractional importance of these climatic and geographic parameters influencing stable isotopes. Additionally, deep learning models were employed to simulate the stable isotope content, with missing data initially addressed using the predictive mean matching (PMM) method. Subsequently, the recursive feature elimination (RFE) technique was applied to identify influential parameters impacting Iran's precipitation stable isotope content. Following this, long short-term memory (LSTM) and deep neural network (DNN) models were utilized to predict stable isotope values in precipitation. Interpolated maps of these values across Iran were developed using inverse distance weighting (IDW), while an interpolated reconstruction error (RE) map was generated to quantify deviations between observed and predicted values at study stations, offering insights into model precision. Validation using evaluation metrics demonstrated that the model based on DNN exhibited higher accuracy. Furthermore, RE maps confirmed acceptable accuracy in simulating the stable isotope content, albeit with minor weaknesses observed in simulation maps. The methodology outlined in this study holds promise for application in regions worldwide characterized by diverse climatic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋夏山发布了新的文献求助10
刚刚
喔喔发布了新的文献求助10
刚刚
Akim应助大民王采纳,获得10
刚刚
烽火完成签到,获得积分10
刚刚
夕夜发布了新的文献求助10
1秒前
1秒前
houfei完成签到,获得积分10
1秒前
1秒前
俊俊完成签到,获得积分10
2秒前
haoliu发布了新的文献求助10
2秒前
Naaa完成签到,获得积分10
4秒前
娷静完成签到,获得积分20
4秒前
科研通AI2S应助云飞扬采纳,获得10
6秒前
今后应助多肉葡萄采纳,获得10
6秒前
6秒前
马马马完成签到,获得积分10
6秒前
852应助完美惜寒采纳,获得10
7秒前
7秒前
minuxSCI完成签到,获得积分10
8秒前
sun发布了新的文献求助10
8秒前
8秒前
8秒前
高兴的白开水完成签到 ,获得积分10
9秒前
9秒前
志轩应助Yongjian采纳,获得10
9秒前
Ava应助马马马采纳,获得10
10秒前
六元turbo完成签到,获得积分10
10秒前
123完成签到,获得积分10
11秒前
1908679476发布了新的文献求助10
11秒前
夕夜完成签到,获得积分10
12秒前
12秒前
angelinazh完成签到,获得积分10
12秒前
秀丽高跟鞋完成签到,获得积分10
12秒前
Gc发布了新的文献求助10
13秒前
13秒前
tingting372发布了新的文献求助10
13秒前
秋夏山完成签到,获得积分10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
劲秉应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 3000
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726924
求助须知:如何正确求助?哪些是违规求助? 3271991
关于积分的说明 9974899
捐赠科研通 2987366
什么是DOI,文献DOI怎么找? 1638910
邀请新用户注册赠送积分活动 778350
科研通“疑难数据库(出版商)”最低求助积分说明 747567