Accelerated discovery of eutectic compositionally complex alloys by generative machine learning

共晶体系 生成语法 计算机科学 材料科学 人工智能 冶金 合金
作者
Ziqiang Chen,Yongheng Shang,Xiaodi Liu,Yong Yang
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1)
标识
DOI:10.1038/s41524-024-01385-5
摘要

Eutectic alloys have garnered significant attention due to their promising mechanical and physical properties, as well as their technological relevance. However, the discovery of eutectic compositionally complex alloys (ECCAs) (e.g. high entropy eutectic alloys) remains a formidable challenge in the vast and intricate compositional space, primarily due to the absence of readily available phase diagrams. To address this issue, we have developed an explainable machine learning (ML) framework that integrates conditional variational autoencoder (CVAE) and artificial neutral network (ANN) models, enabling direct generation of ECCAs. To overcome the prevalent problem of data imbalance encountered in data-driven ECCA design, we have incorporated thermodynamics-derived data descriptors and employed K-means clustering methods for effective data pre-processing. Leveraging our ML framework, we have successfully discovered dual- or even tri-phased ECCAs, spanning from quaternary to senary alloy systems, which have not been previously reported in the literature. These findings hold great promise and indicate that our ML framework can play a pivotal role in accelerating the discovery of technologically significant ECCAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研大王完成签到,获得积分10
4秒前
深情安青应助田田采纳,获得10
6秒前
隐形曼青应助严昌采纳,获得10
7秒前
8秒前
11秒前
不配.应助上古采纳,获得10
11秒前
caq完成签到,获得积分10
12秒前
12秒前
爱撒娇的鱼应助等等采纳,获得10
14秒前
科研白小白完成签到,获得积分10
14秒前
14秒前
thynkz完成签到,获得积分10
14秒前
15秒前
15秒前
SBGLP完成签到,获得积分10
16秒前
sin30cos60发布了新的文献求助10
17秒前
17秒前
18秒前
英俊的铭应助宋致力采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得20
19秒前
20秒前
20秒前
大个应助科研通管家采纳,获得50
20秒前
所所应助科研通管家采纳,获得30
20秒前
gtgyh完成签到,获得积分20
20秒前
科研通AI2S应助Dimples采纳,获得10
22秒前
22秒前
Wangnono发布了新的文献求助10
23秒前
GU关闭了GU文献求助
24秒前
星辰大海应助义气的灯泡采纳,获得10
25秒前
务实饼干应助zzq采纳,获得10
26秒前
hxm完成签到,获得积分10
27秒前
27秒前
zzz完成签到,获得积分10
27秒前
宋致力发布了新的文献求助10
30秒前
30秒前
顾矜应助hwezhu采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079