材料科学
无定形固体
催化作用
阴极
锂(药物)
氧气
Atom(片上系统)
化学工程
同步加速器
石墨烯
纳米技术
结晶学
物理化学
有机化学
医学
物理
工程类
内分泌学
嵌入式系统
生物化学
核物理学
化学
计算机科学
作者
Zeinab Mohamed,Quan Zhou,Kefu Zhu,Guoliang Zhang,Wenjie Xu,Peter Joseph Chimtali,Yuyang Cao,Hanchen Xu,Ziwei Yan,Yixiu Wang,Hassan Akhtar,Aad Al‐Mahgari,Xiaojun Wu,Changda Wang,Li Song
标识
DOI:10.1002/adfm.202410091
摘要
Abstract Aprotic lithium–oxygen batteries (LOBs) may deliver exceptionally high energy density but struggle to attain rapid reversibility and substantial capacity simultaneously, due to typical surface or solution‐formed insulating solid Li 2 O 2 . Tuning the structure of Li 2 O 2 to create a large‐area amorphous layer on the cathode is predicted to overcome the multiperformance limitations. Here, an isolated nickel single atom to nitrogen‐doped graphene as a cathode catalyst (Ni─NG SAC) for LOBs is presented via a green click‐trapping strategy. Derived from the maximized exposure of atomic active sites of the cathode, the formation/decomposition mechanisms of Li 2 O 2 are tailored, and a large area of thin Li 2 O 2 amorphous film is achieved. The structure and functions of Ni─NG SAC are explored by theoretical computation and synchrotron radiational investigation. Consequently, the abundant Ni─N 4 sites enhance redox kinetics and stand out to deliver an impressive specific discharge/charge capacity of 24 248/17 656 mAh g −1 at 200 mA g −1 , together with a long cycle life of over 500 cycles. This study contributes helpful insights to achieve high‐capacity LOBs with long lifespans, by constructing unique single‐atom catalysts to optimize the formation of amorphous discharge Li 2 O 2 products.
科研通智能强力驱动
Strongly Powered by AbleSci AI