Variation pattern, influential factors, and prediction models of PM2.5 concentrations in typical urban functional zones of northeast China

变化(天文学) 中国 地理 自然地理学 环境科学 考古 天体物理学 物理
作者
Dongliang Han,Luyang Shi,Mingqi Wang,Tiantian Zhang,Xuedan Zhang,Baochang Li,Jing Liu,Yufei Tan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176299-176299
标识
DOI:10.1016/j.scitotenv.2024.176299
摘要

This study investigated the spatial and temporal variations of PM2.5 concentrations in Harbin, China, under the influence of meteorological parameters and gaseous pollutants. The complex relationship between meteorological parameters and pollutants was explored using Pearson correlation analysis and interaction effect analysis. Using the correlation analysis and interaction analysis methods, four mechanical learning models, PCC-Is-CNN, PCC-Is-LSTM, PCC-Is-CNN-LSTM and PCC-Is-BP neural network, were developed for predicting PM2.5 concentration in different time scales by combining the long-term and short-term data with the basic mechanical learning models. The results show that the PCC-Is-CNN-LSTM model has superior prediction performance, especially when integrating short-term and long-term historical data. Meanwhile, applying the model to cities in other climatic zones, the results show that the model performs well in the Dwa climatic zone, while the prediction performance is lower in the CWa climatic zone. This suggests that although the model is well adapted in regions with a similar climate to Harbin, model performance may be limited in areas with complex climatic conditions and diverse pollutant sources. This study emphasizes the importance of considering meteorological and pollutant interactions to improve the accuracy of PM2.5 predictions, providing valuable insights into air quality management in cold regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHXDMN完成签到,获得积分10
刚刚
lyt发布了新的文献求助10
刚刚
深情安青应助温暖的冷风采纳,获得10
1秒前
xzy998应助qqaona采纳,获得30
2秒前
吴吴完成签到,获得积分10
3秒前
李健应助8788采纳,获得10
3秒前
立立早发布了新的文献求助10
4秒前
5秒前
研友_8QyXr8发布了新的文献求助10
6秒前
浮游应助dddd采纳,获得10
6秒前
6秒前
我不是奶黄包完成签到,获得积分10
7秒前
星辰大海应助自信的高山采纳,获得10
7秒前
传奇3应助小梦采纳,获得10
8秒前
8秒前
温暖的沛凝完成签到,获得积分10
8秒前
8秒前
浮游应助zhh采纳,获得10
9秒前
GNIK603发布了新的文献求助10
9秒前
zhenghang完成签到,获得积分10
10秒前
张艳茹完成签到 ,获得积分10
12秒前
13秒前
赘婿应助Redinn采纳,获得10
14秒前
研友_8QyXr8完成签到,获得积分10
14秒前
14秒前
16秒前
17秒前
Jjjj完成签到,获得积分10
17秒前
华仔应助终陌采纳,获得10
17秒前
橘子小哥完成签到 ,获得积分10
18秒前
20秒前
leijh123发布了新的文献求助10
21秒前
科研小梁完成签到 ,获得积分10
21秒前
21秒前
港港完成签到 ,获得积分10
23秒前
23秒前
24秒前
无聊的夜山完成签到,获得积分10
24秒前
球球完成签到,获得积分10
24秒前
深情安青应助文光采纳,获得10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124930
求助须知:如何正确求助?哪些是违规求助? 4328978
关于积分的说明 13489368
捐赠科研通 4163582
什么是DOI,文献DOI怎么找? 2282431
邀请新用户注册赠送积分活动 1283622
关于科研通互助平台的介绍 1222842