Variation pattern, influential factors, and prediction models of PM2.5 concentrations in typical urban functional zones of northeast China

变化(天文学) 中国 地理 自然地理学 环境科学 考古 天体物理学 物理
作者
Dongliang Han,Luyang Shi,Mingqi Wang,Tiantian Zhang,Xuedan Zhang,Baochang Li,Jing Liu,Yufei Tan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 176299-176299
标识
DOI:10.1016/j.scitotenv.2024.176299
摘要

This study investigated the spatial and temporal variations of PM2.5 concentrations in Harbin, China, under the influence of meteorological parameters and gaseous pollutants. The complex relationship between meteorological parameters and pollutants was explored using Pearson correlation analysis and interaction effect analysis. Using the correlation analysis and interaction analysis methods, four mechanical learning models, PCC-Is-CNN, PCC-Is-LSTM, PCC-Is-CNN-LSTM and PCC-Is-BP neural network, were developed for predicting PM2.5 concentration in different time scales by combining the long-term and short-term data with the basic mechanical learning models. The results show that the PCC-Is-CNN-LSTM model has superior prediction performance, especially when integrating short-term and long-term historical data. Meanwhile, applying the model to cities in other climatic zones, the results show that the model performs well in the Dwa climatic zone, while the prediction performance is lower in the CWa climatic zone. This suggests that although the model is well adapted in regions with a similar climate to Harbin, model performance may be limited in areas with complex climatic conditions and diverse pollutant sources. This study emphasizes the importance of considering meteorological and pollutant interactions to improve the accuracy of PM2.5 predictions, providing valuable insights into air quality management in cold regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
曾经发布了新的文献求助10
2秒前
科研通AI6应助孙孙孙采纳,获得30
2秒前
4秒前
大力发布了新的文献求助10
5秒前
在水一方应助1111采纳,获得10
5秒前
yy完成签到,获得积分10
5秒前
5秒前
666发布了新的文献求助10
6秒前
乐轩发布了新的文献求助10
7秒前
zz_1997完成签到 ,获得积分10
7秒前
李健应助wenxianxiazai123采纳,获得10
8秒前
一只猪发布了新的文献求助10
9秒前
秀丽的犀牛完成签到,获得积分10
9秒前
桃博完成签到,获得积分10
10秒前
严三笑发布了新的文献求助10
11秒前
11秒前
完美世界应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得30
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
虚幻访冬应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
xxfsx应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
孙孙应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543