杂原子
材料科学
金属
阳极
纳米技术
化学工程
冶金
化学
工程类
有机化学
电极
物理化学
戒指(化学)
作者
Jianan Gu,Yongzheng Zhang,Yu Shi,Yilong Jin,Hao Chen,Xin Sun,Yanhong Wang,Liang Zhan,Zhiguo Du,Shubin Yang,Meicheng Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-09-11
标识
DOI:10.1021/acsnano.4c08831
摘要
Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode-electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI