Lightweight CNN combined with knowledge distillation for the accurate determination of black tea fermentation degree

学位(音乐) 红茶 蒸馏 发酵 化学 食品科学 生化工程 色谱法 计算机科学 工程类 物理 声学
作者
Zezhong Ding,Chongshan Yang,Bin Hu,Mengqi Guo,Jinggang Li,Mengjie Wang,Zhengrui Tian,Zhiwei Chen,Chunwang Dong
出处
期刊:Food Research International [Elsevier BV]
卷期号:194: 114929-114929
标识
DOI:10.1016/j.foodres.2024.114929
摘要

Black tea is the second most common type of tea in China. Fermentation is one of the most critical processes in its production, and it affects the quality of the finished product, whether it is insufficient or excessive. At present, the determination of black tea fermentation degree completely relies on artificial experience. It leads to inconsistent quality of black tea. To solve this problem, we use machine vision technology to distinguish the degree of fermentation of black tea based on images, this paper proposes a lightweight convolutional neural network (CNN) combined with knowledge distillation to discriminate the degree of fermentation of black tea. After comparing 12 kinds of CNN models, taking into account the size of the model and the performance of discrimination, as well as the selection principle of teacher models, Shufflenet_v2_x1.0 is selected as the student model, and Efficientnet_v2 is selected as the teacher model. Then, CrossEntropy Loss is replaced by Focal Loss. Finally, for Distillation Loss ratios of 0.6, 0.7, 0.8, 0.9, Soft Target Knowledge Distillation (ST), Masked Generative Distillation (MGD), Similarity-Preserving Knowledge Distillation (SPKD), and Attention Transfer (AT) four knowledge distillation methods are tested for their performance in distilling knowledge from the Shufflenet_v2_x1.0 model. The results show that the model discrimination performance after distillation is the best when the Distillation Loss ratio is 0.8 and the MGD method is used. This setup effectively improves the discrimination performance without increasing the number of parameters and computation volume. The model's P, R and F1 values reach 0.9208, 0.9190 and 0.9192, respectively. It achieves precise discrimination of the fermentation degree of black tea. This meets the requirements of objective black tea fermentation judgment and provides technical support for the intelligent processing of black tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助冷静飞柏采纳,获得10
刚刚
1秒前
1秒前
2秒前
Ryan发布了新的文献求助10
2秒前
3秒前
3秒前
cangye完成签到,获得积分10
3秒前
温暖霸完成签到,获得积分10
3秒前
JINX发布了新的文献求助10
4秒前
卉酱发布了新的文献求助30
4秒前
蔡万润完成签到 ,获得积分10
4秒前
完美世界应助大气千柳采纳,获得10
4秒前
4秒前
4秒前
5秒前
小叶发布了新的文献求助30
5秒前
ketaman完成签到,获得积分10
6秒前
6秒前
lxl发布了新的文献求助10
8秒前
8秒前
weidongwu发布了新的文献求助10
8秒前
鳗鱼灵寒发布了新的文献求助10
8秒前
sonder发布了新的文献求助10
9秒前
9秒前
青云完成签到,获得积分10
9秒前
CodeCraft应助旺旺小仙贝采纳,获得10
9秒前
10秒前
小破网完成签到 ,获得积分0
10秒前
11秒前
才下眉头发布了新的文献求助10
11秒前
何为会完成签到,获得积分10
11秒前
11秒前
小鱼完成签到,获得积分10
12秒前
jiaru发布了新的文献求助10
12秒前
joker完成签到,获得积分10
12秒前
小D朵朵拉发布了新的文献求助10
12秒前
ttrr发布了新的文献求助10
13秒前
13秒前
CO2完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600