Lightweight CNN combined with knowledge distillation for the accurate determination of black tea fermentation degree

学位(音乐) 红茶 蒸馏 发酵 化学 食品科学 生化工程 色谱法 计算机科学 工程类 物理 声学
作者
Zezhong Ding,Chongshan Yang,Bin Hu,Mengqi Guo,Jinggang Li,Mengjie Wang,Zhengrui Tian,Zhiwei Chen,Chunwang Dong
出处
期刊:Food Research International [Elsevier]
卷期号:194: 114929-114929
标识
DOI:10.1016/j.foodres.2024.114929
摘要

Black tea is the second most common type of tea in China. Fermentation is one of the most critical processes in its production, and it affects the quality of the finished product, whether it is insufficient or excessive. At present, the determination of black tea fermentation degree completely relies on artificial experience. It leads to inconsistent quality of black tea. To solve this problem, we use machine vision technology to distinguish the degree of fermentation of black tea based on images, this paper proposes a lightweight convolutional neural network (CNN) combined with knowledge distillation to discriminate the degree of fermentation of black tea. After comparing 12 kinds of CNN models, taking into account the size of the model and the performance of discrimination, as well as the selection principle of teacher models, Shufflenet_v2_x1.0 is selected as the student model, and Efficientnet_v2 is selected as the teacher model. Then, CrossEntropy Loss is replaced by Focal Loss. Finally, for Distillation Loss ratios of 0.6, 0.7, 0.8, 0.9, Soft Target Knowledge Distillation (ST), Masked Generative Distillation (MGD), Similarity-Preserving Knowledge Distillation (SPKD), and Attention Transfer (AT) four knowledge distillation methods are tested for their performance in distilling knowledge from the Shufflenet_v2_x1.0 model. The results show that the model discrimination performance after distillation is the best when the Distillation Loss ratio is 0.8 and the MGD method is used. This setup effectively improves the discrimination performance without increasing the number of parameters and computation volume. The model's P, R and F1 values reach 0.9208, 0.9190 and 0.9192, respectively. It achieves precise discrimination of the fermentation degree of black tea. This meets the requirements of objective black tea fermentation judgment and provides technical support for the intelligent processing of black tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ledodo完成签到,获得积分10
刚刚
1秒前
星辰大海应助幸福大白采纳,获得30
2秒前
3秒前
6秒前
god关注了科研通微信公众号
7秒前
思源应助饱满泥猴桃采纳,获得10
7秒前
鹂鹂复霖霖完成签到,获得积分10
8秒前
端庄的如花完成签到 ,获得积分10
8秒前
Drlee完成签到,获得积分20
10秒前
欧帕菲特发布了新的文献求助10
11秒前
12秒前
zhanglh发布了新的文献求助100
12秒前
科研通AI2S应助幸福大白采纳,获得10
13秒前
胡英宇发布了新的文献求助10
14秒前
善学以致用应助heheda采纳,获得10
16秒前
16秒前
科研通AI2S应助初雪平寒采纳,获得10
16秒前
zfh发布了新的文献求助10
17秒前
Karst颜完成签到,获得积分10
17秒前
dongdong完成签到 ,获得积分10
18秒前
Lucas应助科研通管家采纳,获得20
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得30
19秒前
大模型应助科研通管家采纳,获得10
19秒前
19秒前
852应助科研通管家采纳,获得10
19秒前
陈陈发布了新的文献求助10
22秒前
Singularity应助FUNG采纳,获得10
24秒前
25秒前
25秒前
Ava应助zfh采纳,获得30
27秒前
Min完成签到,获得积分10
27秒前
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954