材料科学
光电探测器
光电子学
带隙
量子效率
有机半导体
光电效应
半导体
有机太阳能电池
红外线的
光学
物理
复合材料
聚合物
作者
Qian Zhang,Jingwen Chen,Jie Yang,Muyi Fu,Yunhao Cao,Minghao Dong,Jiangkai Yu,Shengyi Dong,Xiye Yang,Lin Shao,Z. W. Hu,Houji Cai,Chunchen Liu,Fei Huang
标识
DOI:10.1002/adma.202406950
摘要
Abstract The performance of organic photodetectors (OPDs) sensitive to the short‐wavelength infrared (SWIR) light lags behind commercial indium gallium arsenide (InGaAs) photodetectors primarily due to the scarcity of organic semiconductors with efficient photoelectric responses exceeding 1.3 µm. Limited by the Energy‐gap law, ultralow‐bandgap organic semiconductors usually suffer from severe non‐radiative transitions, resulting in low external quantum efficiency (EQE). Herein, a difluoro‐substituted quinoid terminal group (QC‐2F) with exceptionally strong electron‐negativity is developed for constructing a new non‐fullerene acceptor (NFA), Y‐QC4F with an ultralow bandgap of 0.83 eV. This subtle structural modification significantly enhances intermolecular packing order and density, enabling an absorption onset up to 1.5 µm while suppressing non‐radiation recombination in Y‐QC4F films. SWIR OPDs based on Y‐QC4F achieve an impressive detectivity ( D *) over 10 11 Jones from 0.4 to 1.5 µm under 0 V bias, with a maximum of 1.68 × 10 12 Jones at 1.16 µm. Furthermore, the resulting OPDs demonstrate competitive performance with commercial photodetectors for high‐quality SWIR imaging even under 1.4 µm irradiation.
科研通智能强力驱动
Strongly Powered by AbleSci AI