A novel sand cat swarm optimization algorithm-based SVM for diagnosis imaging genomics in Alzheimer’s disease

支持向量机 神经影像学 人工智能 计算机科学 特征选择 模式识别(心理学) 水准点(测量) 机器学习 预处理器 心理学 神经科学 大地测量学 地理
作者
Luyun Wang,Jinhua Sheng,Qiao Zhang,Ze Yang,Xin Yu,Yan Song,Qian Zhang,Binbing Wang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (8) 被引量:2
标识
DOI:10.1093/cercor/bhae329
摘要

In recent years, brain imaging genomics has advanced significantly in revealing underlying pathological mechanisms of Alzheimer's disease (AD) and providing early diagnosis. In this paper, we present a framework for diagnosing AD that integrates magnetic resonance imaging (fMRI) genetic preprocessing, feature selection, and a support vector machine (SVM) model. In particular, a novel sand cat swarm optimization (SCSO) algorithm, named SS-SCSO, which integrates the spiral search strategy and alert mechanism from the sparrow search algorithm, is proposed to optimize the SVM parameters. The optimization efficacy of the SS-SCSO algorithm is evaluated using CEC2017 benchmark functions, with results compared with other metaheuristic algorithms (MAs). The proposed SS-SCSO-SVM framework has been effectively employed to classify different stages of cognitive impairment in Alzheimer's Disease using imaging genetic datasets from the Alzheimer's Disease Neuroimaging Initiative. It has demonstrated excellent classification accuracies for four typical cases, including AD, early mild cognitive impairment, late mild cognitive impairment, and healthy control. Furthermore, experiment results indicate that the SS-SCSO-SVM algorithm has a stronger exploration capability for diagnosing AD compared to other well-established MAs and machine learning techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
seven发布了新的文献求助10
2秒前
3秒前
上官若男应助霸气的书雁采纳,获得10
3秒前
打打应助孙嘉遇采纳,获得10
3秒前
4秒前
4秒前
霸气的愫发布了新的文献求助10
5秒前
6秒前
复杂的兔子完成签到,获得积分10
6秒前
shouyu29应助dadi采纳,获得50
7秒前
ruru发布了新的文献求助30
7秒前
7秒前
7秒前
seven完成签到,获得积分10
8秒前
辛苦打工人完成签到,获得积分10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
CCL应助科研通管家采纳,获得20
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
天天快乐应助rabbitsang采纳,获得20
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
林森应助科研通管家采纳,获得10
9秒前
喜悦中道应助科研通管家采纳,获得10
9秒前
sweetbearm应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
CCL应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
10秒前
mianmianyu发布了新的文献求助10
10秒前
dwls完成签到,获得积分10
11秒前
11秒前
SciGPT应助泡鹅采纳,获得10
12秒前
岩子驳回了Ava应助
13秒前
shadow完成签到,获得积分10
13秒前
13秒前
羊白玉完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3532562
求助须知:如何正确求助?哪些是违规求助? 3111394
关于积分的说明 9303409
捐赠科研通 2809426
什么是DOI,文献DOI怎么找? 1542386
邀请新用户注册赠送积分活动 718388
科研通“疑难数据库(出版商)”最低求助积分说明 710920