Development of a Neural Network for Target Gas Detection in Interdigitated Electrode Sensor-Based E-Nose Systems

电子鼻 电极 人工神经网络 电极阵列 材料科学 计算机科学 纳米技术 生物医学工程 人工智能 工程类 化学 物理化学
作者
Kadir Kaya,Mehmet Ali Ebeoğlu
出处
期刊:Sensors [MDPI AG]
卷期号:24 (16): 5315-5315
标识
DOI:10.3390/s24165315
摘要

In this study, a neural network was developed for the detection of acetone, ethanol, chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor responses in the e-nose system. The sensor was fed with a sinusoidal voltage at 10 MHz frequency and 0.707 V amplitude. Sensor responses were sampled at 100 Hz frequency and converted to digital data with 16-bit resolution. The highest change in impedance magnitude obtained in the e-nose system against chloroform gas was recorded as 24.86 Ω over a concentration range of 0–11,720 ppm. The highest gas detection sensitivity of the e-nose system was calculated as 0.7825 Ω/ppm against 6.7 ppm NO2 gas. Before training with the neural network, data were filtered from noise using Kalman filtering. Principal Component Analysis (PCA) was applied to the improved signal data for dimensionality reduction, separating them from noise and outliers with low variance and non-informative characteristics. The neural network model created is multi-layered and employs the backpropagation algorithm. The Xavier initialization method was used for determining the initial weights of neurons. The neural network successfully classified NO2 (6.7 ppm), acetone (1820 ppm), ethanol (1820 ppm), and chloroform (1465 ppm) gases with a test accuracy of 87.16%. The neural network achieved this test accuracy in a training time of 239.54 milliseconds. As sensor sensitivity increases, the detection capability of the neural network also improves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
KIQING发布了新的文献求助10
刚刚
天天快乐应助宓之云采纳,获得10
1秒前
ccl完成签到,获得积分10
1秒前
zh应助二六采纳,获得10
2秒前
2秒前
Secyu发布了新的文献求助10
3秒前
梦初醒处发布了新的文献求助10
3秒前
Hello应助如意的代萱采纳,获得10
3秒前
veryao发布了新的文献求助10
3秒前
首席或雪月完成签到,获得积分10
4秒前
4秒前
5秒前
bkagyin应助SDNUDRUG采纳,获得10
5秒前
学术通zzz应助缥缈的涵菡采纳,获得10
5秒前
!!完成签到,获得积分10
6秒前
7秒前
caulif完成签到 ,获得积分10
7秒前
wanci应助菠萝披萨采纳,获得10
8秒前
cccc完成签到,获得积分10
8秒前
wisher完成签到 ,获得积分10
9秒前
哆啦发布了新的文献求助10
10秒前
11秒前
火星上夜绿完成签到,获得积分10
11秒前
研友_8yN60L发布了新的文献求助10
11秒前
小树叶完成签到,获得积分10
11秒前
cocolu应助欢呼的乌冬面采纳,获得10
12秒前
偷吻月亮发布了新的文献求助10
12秒前
丫丫完成签到,获得积分10
12秒前
宓之云发布了新的文献求助10
14秒前
14秒前
23xyke完成签到,获得积分10
14秒前
kushdw完成签到,获得积分10
15秒前
安慕希完成签到,获得积分10
15秒前
传奇3应助U9A采纳,获得200
16秒前
共享精神应助tan采纳,获得10
16秒前
深情安青应助2h采纳,获得10
17秒前
bkagyin应助guozizi采纳,获得10
19秒前
朵朵完成签到,获得积分10
20秒前
无名老大应助rachel-yue采纳,获得50
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696