Development of a Neural Network for Target Gas Detection in Interdigitated Electrode Sensor-Based E-Nose Systems

电子鼻 电极 人工神经网络 电极阵列 材料科学 计算机科学 纳米技术 生物医学工程 人工智能 工程类 化学 物理化学
作者
Kadir Kaya,Mehmet Ali Ebeoğlu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (16): 5315-5315
标识
DOI:10.3390/s24165315
摘要

In this study, a neural network was developed for the detection of acetone, ethanol, chloroform, and air pollutant NO2 gases using an Interdigitated Electrode (IDE) sensor-based e-nose system. A bioimpedance spectroscopy (BIS)-based interface circuit was used to measure sensor responses in the e-nose system. The sensor was fed with a sinusoidal voltage at 10 MHz frequency and 0.707 V amplitude. Sensor responses were sampled at 100 Hz frequency and converted to digital data with 16-bit resolution. The highest change in impedance magnitude obtained in the e-nose system against chloroform gas was recorded as 24.86 Ω over a concentration range of 0–11,720 ppm. The highest gas detection sensitivity of the e-nose system was calculated as 0.7825 Ω/ppm against 6.7 ppm NO2 gas. Before training with the neural network, data were filtered from noise using Kalman filtering. Principal Component Analysis (PCA) was applied to the improved signal data for dimensionality reduction, separating them from noise and outliers with low variance and non-informative characteristics. The neural network model created is multi-layered and employs the backpropagation algorithm. The Xavier initialization method was used for determining the initial weights of neurons. The neural network successfully classified NO2 (6.7 ppm), acetone (1820 ppm), ethanol (1820 ppm), and chloroform (1465 ppm) gases with a test accuracy of 87.16%. The neural network achieved this test accuracy in a training time of 239.54 milliseconds. As sensor sensitivity increases, the detection capability of the neural network also improves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助金虎采纳,获得10
刚刚
Nansen完成签到,获得积分10
刚刚
Lucas应助故意的鼠标采纳,获得10
1秒前
1秒前
思源应助千寻采纳,获得10
2秒前
传奇3应助cora采纳,获得10
3秒前
瘦瘦妖妖发布了新的文献求助10
4秒前
5秒前
楚轩发布了新的文献求助10
5秒前
优雅猕猴桃给优雅猕猴桃的求助进行了留言
5秒前
lemongulf完成签到 ,获得积分10
6秒前
FashionBoy应助D.lon采纳,获得10
6秒前
yuruibo发布了新的文献求助10
6秒前
sanch发布了新的文献求助10
6秒前
7秒前
8秒前
诚心爆米花完成签到 ,获得积分10
9秒前
cora完成签到,获得积分10
9秒前
一往如常发布了新的文献求助10
9秒前
DDLDOG发布了新的文献求助30
10秒前
10秒前
monoklatt发布了新的文献求助10
11秒前
小先生完成签到,获得积分10
11秒前
罗伊黄完成签到 ,获得积分10
11秒前
12秒前
若雪成依完成签到 ,获得积分10
12秒前
嘻嘻嘻完成签到,获得积分10
13秒前
wisper发布了新的文献求助10
13秒前
chai发布了新的文献求助10
13秒前
14秒前
Owen应助科研小白采纳,获得10
14秒前
懵懂的小蜜蜂完成签到,获得积分10
15秒前
free发布了新的文献求助10
16秒前
16秒前
Azhou完成签到,获得积分10
16秒前
liuhang完成签到,获得积分10
16秒前
16秒前
Xu完成签到,获得积分10
17秒前
cc发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352