亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落沧完成签到,获得积分10
7秒前
8秒前
无极微光应助S1998采纳,获得20
13秒前
Owen应助你嵙这个期刊没买采纳,获得10
14秒前
彭于晏应助00hello00采纳,获得10
18秒前
26秒前
27秒前
29秒前
地老天框发布了新的文献求助10
31秒前
赞zan发布了新的文献求助10
33秒前
赞zan完成签到,获得积分10
37秒前
迷人世开完成签到,获得积分10
38秒前
42秒前
李玉博完成签到 ,获得积分10
44秒前
整齐的飞兰完成签到 ,获得积分10
46秒前
小二郎应助科研通管家采纳,获得10
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
李爱国应助科研通管家采纳,获得10
48秒前
小豹子完成签到,获得积分10
48秒前
57秒前
英俊的铭应助yanifang采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
AXX041795发布了新的文献求助10
1分钟前
烟花应助luming采纳,获得30
1分钟前
西瓜霜发布了新的文献求助10
1分钟前
1分钟前
西瓜霜完成签到,获得积分10
1分钟前
领导范儿应助AXX041795采纳,获得10
1分钟前
1分钟前
00hello00发布了新的文献求助10
1分钟前
luming发布了新的文献求助30
1分钟前
luming完成签到,获得积分10
1分钟前
久某完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷静小懒虫完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110