Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰给星辰的求助进行了留言
1秒前
冰蓝色的忧伤完成签到,获得积分10
2秒前
科研通AI6应助松哥采纳,获得10
2秒前
2秒前
852应助张宝采纳,获得10
2秒前
高小h发布了新的文献求助10
3秒前
LFH发布了新的文献求助10
3秒前
hbhbj发布了新的文献求助10
5秒前
堆堆完成签到 ,获得积分10
5秒前
tj完成签到,获得积分10
6秒前
三七发布了新的文献求助10
6秒前
桐桐应助小巧孤晴采纳,获得10
7秒前
sunhhhh完成签到 ,获得积分10
8秒前
9秒前
9秒前
科研通AI6应助圆锥香蕉采纳,获得10
9秒前
小南完成签到,获得积分10
9秒前
suozi完成签到,获得积分10
9秒前
10秒前
小二郎应助高小h采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
hbhbj发布了新的文献求助10
11秒前
12秒前
FashionBoy应助科科采纳,获得10
12秒前
12秒前
安然完成签到,获得积分10
12秒前
指尖的阿里阿德涅完成签到,获得积分10
13秒前
呆萌映寒完成签到,获得积分10
13秒前
13秒前
14秒前
田様应助三七采纳,获得10
15秒前
15秒前
研友_Zzrx6Z完成签到,获得积分10
16秒前
时尚初柳发布了新的文献求助10
16秒前
海阔天空发布了新的文献求助10
16秒前
李健的小迷弟应助Archer采纳,获得10
16秒前
无极微光应助Sanmo采纳,获得20
17秒前
拿起蜡笔小新完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340