Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
库里强完成签到,获得积分10
2秒前
丰知然应助星辰采纳,获得10
4秒前
4秒前
4秒前
_u_ii应助哭泣的缘郡采纳,获得10
5秒前
科研小李应助陈陈陈采纳,获得10
6秒前
孟怀笙发布了新的文献求助10
6秒前
8R60d8应助Augenstern采纳,获得10
6秒前
隐形曼青应助doudou采纳,获得30
6秒前
吴昊东发布了新的文献求助20
7秒前
小玲子发布了新的文献求助80
8秒前
ZKK发布了新的文献求助10
8秒前
一站到底发布了新的文献求助10
8秒前
啊哈发布了新的文献求助10
8秒前
整齐珩关注了科研通微信公众号
10秒前
11秒前
好运来发布了新的文献求助10
12秒前
xixia发布了新的文献求助10
12秒前
12秒前
13秒前
倾心等待天使完成签到,获得积分10
13秒前
16秒前
HRIFFIN发布了新的文献求助10
16秒前
16秒前
dd完成签到,获得积分20
18秒前
和谐谷蕊发布了新的文献求助10
18秒前
俏皮的一德完成签到,获得积分10
19秒前
19秒前
小彭友完成签到,获得积分10
20秒前
20秒前
cocolu应助寒冷的逍遥采纳,获得10
20秒前
李大仁发布了新的文献求助10
22秒前
柟枫完成签到,获得积分10
23秒前
Hello应助HRIFFIN采纳,获得10
23秒前
24秒前
852应助啊哈采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297