Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的成风完成签到,获得积分10
刚刚
常绝山完成签到 ,获得积分10
刚刚
水下月发布了新的文献求助10
刚刚
Creshiki发布了新的文献求助10
刚刚
zouhui发布了新的文献求助10
1秒前
ppp发布了新的文献求助10
1秒前
似乎一场梦完成签到,获得积分10
2秒前
王亲近发布了新的文献求助10
4秒前
4秒前
成就的咖啡完成签到 ,获得积分10
4秒前
4秒前
chao完成签到,获得积分10
5秒前
华仔应助王肖宁采纳,获得10
6秒前
浮游应助汕头凯奇采纳,获得10
6秒前
机智的雁荷完成签到 ,获得积分10
6秒前
cooper发布了新的文献求助10
7秒前
John发布了新的文献求助10
7秒前
leiyang49完成签到,获得积分10
10秒前
今后应助Creshiki采纳,获得10
12秒前
叮叮叮发布了新的文献求助10
12秒前
12秒前
ls完成签到,获得积分10
12秒前
15秒前
充电宝应助科研小渣渣采纳,获得10
16秒前
Owen应助婷婷的大宝剑采纳,获得10
20秒前
shhoing应助乆乆乆乆采纳,获得10
20秒前
21秒前
直率的砖头完成签到,获得积分10
21秒前
阳光问安完成签到 ,获得积分10
23秒前
24秒前
24秒前
大模型应助茶米采纳,获得10
25秒前
25秒前
cooper完成签到,获得积分20
26秒前
27秒前
27秒前
29秒前
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003