清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 量子力学 物理
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与梦随行2011完成签到 ,获得积分10
11秒前
21秒前
张朔发布了新的文献求助10
26秒前
27秒前
JamesPei应助Marshall采纳,获得10
47秒前
54秒前
Marshall发布了新的文献求助10
58秒前
无心的善愁完成签到 ,获得积分20
1分钟前
wodetaiyangLLL完成签到 ,获得积分10
1分钟前
Kevin完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
落山姬完成签到,获得积分10
2分钟前
脑洞疼应助xinjie采纳,获得10
3分钟前
3分钟前
AA发布了新的文献求助10
3分钟前
张朔完成签到,获得积分10
3分钟前
AA完成签到,获得积分10
3分钟前
他们叫我小伟完成签到 ,获得积分10
3分钟前
willlee完成签到 ,获得积分10
3分钟前
哭泣灯泡完成签到,获得积分10
3分钟前
Future完成签到 ,获得积分10
4分钟前
Freya完成签到,获得积分10
4分钟前
Freya发布了新的文献求助10
4分钟前
薛定谔的猫完成签到,获得积分10
4分钟前
4分钟前
4分钟前
xinjie发布了新的文献求助10
4分钟前
qin完成签到 ,获得积分10
4分钟前
5分钟前
Arctic完成签到 ,获得积分10
5分钟前
5分钟前
徐萌完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
如歌完成签到,获得积分10
5分钟前
5分钟前
ding应助Marshall采纳,获得10
6分钟前
zhangjianzeng完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788937
求助须知:如何正确求助?哪些是违规求助? 5713498
关于积分的说明 15474025
捐赠科研通 4916906
什么是DOI,文献DOI怎么找? 2646617
邀请新用户注册赠送积分活动 1594299
关于科研通互助平台的介绍 1548721