亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC完成签到,获得积分0
刚刚
1秒前
搜集达人应助LEETHEO采纳,获得10
1秒前
程住气完成签到 ,获得积分10
4秒前
9秒前
ceeray23应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
yyds应助科研通管家采纳,获得80
10秒前
yyds应助科研通管家采纳,获得80
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
ceeray23应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
清脆雪糕完成签到,获得积分10
10秒前
TAT完成签到 ,获得积分10
11秒前
赘婿应助橱窗采纳,获得10
11秒前
清脆雪糕发布了新的文献求助10
13秒前
合适雅绿完成签到 ,获得积分10
14秒前
VDC发布了新的文献求助10
19秒前
24秒前
橱窗发布了新的文献求助10
29秒前
30秒前
37秒前
cccxq发布了新的文献求助10
43秒前
仙人不指路完成签到 ,获得积分10
47秒前
CodeCraft应助cccxq采纳,获得10
47秒前
FashionBoy应助橱窗采纳,获得10
49秒前
54秒前
dax大雄完成签到 ,获得积分10
57秒前
58秒前
科研小新发布了新的文献求助10
59秒前
橱窗完成签到,获得积分10
1分钟前
1分钟前
绿柏完成签到,获得积分10
1分钟前
1分钟前
Zq完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332