Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 量子力学 物理
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
sheny1完成签到,获得积分10
3秒前
温柔柜子发布了新的文献求助10
4秒前
4秒前
科研通AI6.1应助李茉琳采纳,获得10
5秒前
郑泽航发布了新的文献求助10
5秒前
小蘑菇应助HBY采纳,获得10
5秒前
llf完成签到 ,获得积分10
6秒前
LX完成签到,获得积分10
6秒前
科研通AI6.1应助online1881采纳,获得10
6秒前
一坨台台完成签到,获得积分10
7秒前
7秒前
大力元霜完成签到,获得积分10
7秒前
8秒前
牛牛超人发布了新的文献求助20
9秒前
12秒前
boyis完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
YR完成签到 ,获得积分10
15秒前
15秒前
15秒前
落寞剑成完成签到 ,获得积分10
16秒前
慕青应助WYN采纳,获得10
17秒前
17秒前
17秒前
温柔柜子发布了新的文献求助10
17秒前
19秒前
19秒前
Mito2009完成签到,获得积分10
19秒前
littleby发布了新的文献求助10
19秒前
sling116完成签到,获得积分10
21秒前
哈哈发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
阚曦完成签到,获得积分10
22秒前
Mito2009发布了新的文献求助10
22秒前
23秒前
追梦人完成签到,获得积分10
23秒前
顾矜应助sinlar采纳,获得10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382