亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 量子力学 物理
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
3秒前
章鱼完成签到,获得积分10
3秒前
6秒前
湘崽丫完成签到 ,获得积分10
7秒前
10秒前
11秒前
11秒前
14秒前
文静人达发布了新的文献求助10
14秒前
lili发布了新的文献求助10
16秒前
gentalguy发布了新的文献求助10
16秒前
手可摘星陈同学完成签到 ,获得积分10
16秒前
yuanyuan发布了新的文献求助10
17秒前
传奇3应助lili采纳,获得10
22秒前
abc完成签到 ,获得积分10
25秒前
春天的粥完成签到 ,获得积分10
25秒前
26秒前
29秒前
满意妙梦发布了新的文献求助10
29秒前
30秒前
乐乐应助nqq采纳,获得10
30秒前
wtian完成签到,获得积分10
33秒前
JYXin发布了新的文献求助10
35秒前
cc发布了新的文献求助10
35秒前
wczhang1999完成签到 ,获得积分10
35秒前
Owen应助cc采纳,获得10
42秒前
蓝莓芝士完成签到 ,获得积分10
43秒前
JamesPei应助yuanyuan采纳,获得10
43秒前
笑点低的静竹完成签到,获得积分10
46秒前
西瓜刀完成签到 ,获得积分10
47秒前
47秒前
枝头树上的布谷鸟完成签到 ,获得积分10
50秒前
51秒前
天天快乐应助满意妙梦采纳,获得10
1分钟前
Liuxinyan发布了新的文献求助10
1分钟前
Fiona完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599645
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838402
捐赠科研通 4669607
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898