已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 物理 量子力学
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
耍酷如柏完成签到,获得积分10
4秒前
Owen应助杨欣采纳,获得10
4秒前
善学以致用应助杨欣采纳,获得10
4秒前
Jasper应助杨欣采纳,获得10
4秒前
桐桐应助杨欣采纳,获得10
4秒前
脑洞疼应助杨欣采纳,获得10
4秒前
three发布了新的文献求助10
5秒前
math123完成签到,获得积分10
6秒前
兜兜完成签到,获得积分10
8秒前
NexusExplorer应助南风采纳,获得30
9秒前
Esther完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
张之静完成签到,获得积分10
12秒前
12秒前
12秒前
琪琪完成签到 ,获得积分10
13秒前
13秒前
math123发布了新的文献求助10
14秒前
Nancy完成签到,获得积分10
14秒前
终于花开日完成签到 ,获得积分10
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
研友_VZG7GZ应助远志采纳,获得10
15秒前
mouxq发布了新的文献求助10
17秒前
17秒前
浮游应助谁会采纳,获得10
18秒前
18秒前
wlei9534发布了新的文献求助200
19秒前
找不到气得跳脚完成签到 ,获得积分10
19秒前
张之静发布了新的文献求助10
21秒前
22秒前
1111发布了新的文献求助200
22秒前
科研通AI6应助lcx采纳,获得10
23秒前
zhangnan完成签到 ,获得积分10
24秒前
FashionBoy应助大圣采纳,获得10
26秒前
言论发布了新的文献求助10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744