Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 量子力学 物理
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Chen采纳,获得10
刚刚
英俊的铭应助现代的白桃采纳,获得10
1秒前
翻个花生完成签到,获得积分10
2秒前
TXQ发布了新的文献求助30
3秒前
4秒前
5秒前
5秒前
可爱的函函应助cenghao采纳,获得10
7秒前
呆萌发布了新的文献求助10
7秒前
8秒前
Wenyilong发布了新的文献求助10
8秒前
852应助wrf采纳,获得10
9秒前
9秒前
梦栖发布了新的文献求助10
10秒前
10秒前
cq完成签到,获得积分10
12秒前
勤劳三问发布了新的文献求助30
15秒前
ding应助HQQ采纳,获得10
15秒前
MSYzack发布了新的文献求助10
15秒前
贪玩的秋柔应助刚子采纳,获得10
16秒前
咸鱼发布了新的文献求助10
16秒前
16秒前
lvv完成签到,获得积分10
17秒前
adq完成签到,获得积分10
17秒前
can发布了新的文献求助10
18秒前
在水一方应助飘逸小天鹅采纳,获得10
18秒前
幽默沛山完成签到 ,获得积分10
18秒前
小蘑菇应助文艺的夏波采纳,获得10
19秒前
19秒前
hmoo完成签到,获得积分10
20秒前
guojunjie发布了新的文献求助10
22秒前
23秒前
suzy发布了新的文献求助10
23秒前
24秒前
一一应助风中雨竹采纳,获得10
25秒前
HQQ发布了新的文献求助10
28秒前
28秒前
活泼滑板完成签到,获得积分20
28秒前
28秒前
Yan0909完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601718
求助须知:如何正确求助?哪些是违规求助? 4687179
关于积分的说明 14847790
捐赠科研通 4681917
什么是DOI,文献DOI怎么找? 2539506
邀请新用户注册赠送积分活动 1506371
关于科研通互助平台的介绍 1471340