Retired battery state of health estimation based on multi-frequency decomposition of charging temperature and GRU–transformer integration model

健康状况 电池(电) 变压器 计算机科学 可靠性工程 工程类 电气工程 电压 功率(物理) 量子力学 物理
作者
Hongbo Li,Zebin Li,Yongchun Ma,Jie Lin,Xiaobin Zhao,Wencan Zhang,Fang Guo
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:14 (7)
标识
DOI:10.1063/5.0213419
摘要

Energy storage batteries still have usable capacity after retirement, with excellent secondary utilization value. Estimating the state of health (SOH) of retired batteries is critical to ensure their reuse. As the battery first reaches the end of its useful life, its performance degradation pattern significantly differs from that in service, increasing the difficulty of accurate SOH estimation. This study developed a SOH estimation method for retired batteries based on battery positive, negative, and center temperature data from 80% to 50% of retired battery health. The variational mode decomposition technique divides the temperature signal into multiple trends representing different battery aging mechanisms. The decomposed modes are given a physical meaningfulness, providing a new perspective to monitor battery health. In addition, this study proposes a multi-task learning framework that realizes the parallel processing of two tasks under this framework. On the one hand, the gated recurrent unit is used to estimate the relationship between the battery baseline temperature and SOH, which captures macro-degradation trends of the battery. On the other hand, the transformer network is responsible for analyzing short-term battery health fluctuations caused by subtle temperature changes. This multi-task approach can simultaneously process and analyze both macro-degradation trends and micro-fluctuations in battery degradation, estimating that the root mean square error of battery health is 5.22 × 10−5. Compared to the existing techniques, this study shows potential applications in the retired battery state of health assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AIT发布了新的文献求助10
1秒前
zl12345完成签到,获得积分10
2秒前
伶俐的代天完成签到,获得积分10
3秒前
wf0806发布了新的文献求助10
4秒前
4秒前
CipherSage应助老实的抽屉采纳,获得10
4秒前
任全强发布了新的文献求助10
6秒前
8秒前
9秒前
9秒前
AIT完成签到,获得积分10
11秒前
隐形曼青应助无限水杯采纳,获得10
12秒前
CodeCraft应助李小伟采纳,获得10
13秒前
枕月眠云发布了新的文献求助10
15秒前
劳永杰发布了新的文献求助10
15秒前
SciGPT应助ljx采纳,获得10
18秒前
ZZY完成签到 ,获得积分10
21秒前
21秒前
24秒前
25秒前
Lv完成签到,获得积分10
27秒前
28秒前
漂亮寻云发布了新的文献求助10
29秒前
李小伟发布了新的文献求助10
29秒前
笨笨善若发布了新的文献求助10
31秒前
桐桐应助劳永杰采纳,获得10
31秒前
34秒前
jane发布了新的文献求助10
34秒前
周林花完成签到,获得积分20
35秒前
Hello应助斯文采纳,获得10
36秒前
沐风发布了新的文献求助10
36秒前
37秒前
夏惋清完成签到 ,获得积分0
39秒前
万能图书馆应助亦风采纳,获得10
39秒前
Orange应助GGBAO采纳,获得10
40秒前
DirectorO发布了新的文献求助30
41秒前
Orange应助jane采纳,获得10
42秒前
CodeCraft应助在我梦里绕采纳,获得10
43秒前
joye完成签到,获得积分10
44秒前
ljx完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602