A radiomics-based interpretable machine learning model to predict the HER2 status in bladder cancer: a multicenter study

无线电技术 医学 随机森林 神经组阅片室 支持向量机 接收机工作特性 逻辑回归 Lasso(编程语言) 试验装置 机器学习 可解释性 判别式 特征选择 模式识别(心理学) 人工智能 计算机科学 神经学 精神科 万维网
作者
Zongjie Wei,Xuesong Bai,Yingjie Xv,Shao‐Hao Chen,Siwen Yin,Yang Li,Fajin Lv,Mingzhao Xiao,Yongpeng Xie
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:4
标识
DOI:10.1186/s13244-024-01840-3
摘要

Abstract Objective To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to preoperatively predict human epidermal growth factor receptor 2 (HER2) status in bladder cancer (BCa) with multicenter validation. Methods In this retrospective study, 207 patients with pathologically confirmed BCa were enrolled and divided into the training set ( n = 154) and test set ( n = 53). Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in the training set. Five radiomics-based ML models, namely logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), eXtreme Gradient Boosting (XGBoost) and random forest (RF), were developed. The predictive performance of established ML models was evaluated by the area under the receiver operating characteristic curve (AUC). The Shapley additive explanation (SHAP) was used to analyze the interpretability of ML models. Results A total of 1218 radiomics features were extracted from the nephrographic phase CT images, and 11 features were filtered for constructing ML models. In the test set, the AUCs of LR, SVM, KNN, XGBoost, and RF were 0.803, 0.709, 0.679, 0.794, and 0.815, with corresponding accuracies of 71.7%, 69.8%, 60.4%, 75.5%, and 75.5%, respectively. RF was identified as the optimal classifier. SHAP analysis showed that texture features (gray level size zone matrix and gray level co-occurrence matrix) were significant predictors of HER2 status. Conclusions The radiomics-based interpretable ML model provides a noninvasive tool to predict the HER2 status of BCa with satisfactory discriminatory performance. Critical relevance statement An interpretable radiomics-based machine learning model can preoperatively predict HER2 status in bladder cancer, potentially aiding in the clinical decision-making process. Key Points The CT radiomics model could identify HER2 status in bladder cancer. The random forest model showed a more robust and accurate performance. The model demonstrated favorable interpretability through SHAP method. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iMoney完成签到,获得积分10
刚刚
LEE完成签到 ,获得积分10
1秒前
橘子香发布了新的文献求助10
1秒前
maomao完成签到,获得积分10
1秒前
yyydd发布了新的文献求助10
1秒前
科研通AI2S应助Dandy采纳,获得10
1秒前
李爱国应助明理苑博采纳,获得10
2秒前
ilike发布了新的文献求助10
3秒前
机智的山晴完成签到,获得积分10
3秒前
iMoney发布了新的文献求助10
4秒前
欢喜书易发布了新的文献求助50
4秒前
酷酷的如波完成签到 ,获得积分10
4秒前
4秒前
小蘑菇应助杨佳晨采纳,获得10
4秒前
kjidh发布了新的文献求助10
5秒前
5秒前
CodeCraft应助hu采纳,获得10
5秒前
一品红发布了新的文献求助10
5秒前
gao发布了新的文献求助10
6秒前
7秒前
chenxiaolei完成签到,获得积分10
8秒前
完美世界应助坦率寻雪采纳,获得10
8秒前
苯基乙胺完成签到,获得积分20
8秒前
9秒前
hyx发布了新的文献求助20
10秒前
10秒前
77发布了新的文献求助10
10秒前
10秒前
10秒前
闵其其发布了新的文献求助10
11秒前
12秒前
风中的青发布了新的文献求助10
13秒前
14秒前
好运莲莲发布了新的文献求助10
14秒前
隐形曼青应助昂口3采纳,获得10
15秒前
Questa_Qin发布了新的文献求助10
15秒前
15秒前
欧阳振应助tecumseh采纳,获得10
16秒前
orixero应助kjidh采纳,获得10
16秒前
橘子香完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961655
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139004
捐赠科研通 3240407
什么是DOI,文献DOI怎么找? 1790947
邀请新用户注册赠送积分活动 872683
科研通“疑难数据库(出版商)”最低求助积分说明 803306