A radiomics-based interpretable machine learning model to predict the HER2 status in bladder cancer: a multicenter study

无线电技术 医学 神经组阅片室 膀胱癌 癌症 医学物理学 多中心研究 介入放射学 放射科 人工智能 内科学 计算机科学 神经学 精神科 随机对照试验
作者
Zongjie Wei,Xuesong Bai,Yingjie Xv,Shao‐Hao Chen,Siwen Yin,Yang Li,Fajin Lv,Mingzhao Xiao,Yongpeng Xie
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01840-3
摘要

Abstract Objective To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to preoperatively predict human epidermal growth factor receptor 2 (HER2) status in bladder cancer (BCa) with multicenter validation. Methods In this retrospective study, 207 patients with pathologically confirmed BCa were enrolled and divided into the training set ( n = 154) and test set ( n = 53). Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in the training set. Five radiomics-based ML models, namely logistic regression (LR), support vector machine (SVM), k-nearest neighbors (KNN), eXtreme Gradient Boosting (XGBoost) and random forest (RF), were developed. The predictive performance of established ML models was evaluated by the area under the receiver operating characteristic curve (AUC). The Shapley additive explanation (SHAP) was used to analyze the interpretability of ML models. Results A total of 1218 radiomics features were extracted from the nephrographic phase CT images, and 11 features were filtered for constructing ML models. In the test set, the AUCs of LR, SVM, KNN, XGBoost, and RF were 0.803, 0.709, 0.679, 0.794, and 0.815, with corresponding accuracies of 71.7%, 69.8%, 60.4%, 75.5%, and 75.5%, respectively. RF was identified as the optimal classifier. SHAP analysis showed that texture features (gray level size zone matrix and gray level co-occurrence matrix) were significant predictors of HER2 status. Conclusions The radiomics-based interpretable ML model provides a noninvasive tool to predict the HER2 status of BCa with satisfactory discriminatory performance. Critical relevance statement An interpretable radiomics-based machine learning model can preoperatively predict HER2 status in bladder cancer, potentially aiding in the clinical decision-making process. Key Points The CT radiomics model could identify HER2 status in bladder cancer. The random forest model showed a more robust and accurate performance. The model demonstrated favorable interpretability through SHAP method. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶扁舟完成签到 ,获得积分10
3秒前
jx完成签到 ,获得积分10
3秒前
bblv完成签到 ,获得积分10
6秒前
林夕完成签到,获得积分10
20秒前
青桔柠檬完成签到 ,获得积分10
22秒前
野性的柠檬完成签到,获得积分10
24秒前
连难胜完成签到 ,获得积分10
31秒前
Hello应助科研通管家采纳,获得10
31秒前
小静完成签到 ,获得积分10
34秒前
racill完成签到 ,获得积分10
52秒前
54秒前
认真小海豚完成签到 ,获得积分10
56秒前
xiaohao完成签到 ,获得积分10
56秒前
认真小海豚关注了科研通微信公众号
59秒前
自由老头发布了新的文献求助10
1分钟前
luffy189完成签到 ,获得积分10
1分钟前
畅快的谷秋完成签到 ,获得积分10
1分钟前
zyw完成签到 ,获得积分10
1分钟前
CYL完成签到 ,获得积分10
1分钟前
想飞的熊完成签到 ,获得积分0
1分钟前
华理附院孙文博完成签到 ,获得积分10
1分钟前
tmobiusx完成签到,获得积分10
1分钟前
yi完成签到 ,获得积分10
1分钟前
平平平平完成签到 ,获得积分10
1分钟前
属实有点拉胯完成签到 ,获得积分10
1分钟前
张若旸完成签到 ,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
多克特里完成签到 ,获得积分10
1分钟前
2分钟前
woshiwuziq完成签到 ,获得积分10
2分钟前
黄花完成签到 ,获得积分10
2分钟前
kylin发布了新的文献求助30
2分钟前
Jasmineyfz完成签到 ,获得积分10
2分钟前
冷傲凝琴完成签到,获得积分10
2分钟前
jiaojaioo完成签到,获得积分10
2分钟前
jojo665完成签到 ,获得积分10
2分钟前
wBw完成签到,获得积分10
2分钟前
合适醉蝶完成签到 ,获得积分10
2分钟前
沙子完成签到 ,获得积分0
2分钟前
乐正怡完成签到 ,获得积分0
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768824
捐赠科研通 2440241
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792