亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model uncertainty quantification of a degradation model of miter gates using normalizing flow-based likelihood-free inference

推论 不确定度量化 降级(电信) 统计推断 计算机科学 流量(数学) 算法 数学 统计 人工智能 几何学 电信
作者
Jice Zeng,Michael D. Todd,Zhao Zhao,Zhen Hu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241287864
摘要

Degradation modeling is essential for failure prognostics of miter gates and subsequent risk-informed maintenance or operational decision-making. Typically, degradation models are formulated based on certain assumptions and simplifications and may not fully capture the complexity of underlying degradation mechanisms. Even minor errors in such models may lead to significant discrepancies in failure prognostics due to error accumulation over time. Aiming to improve the accuracy of the degradation model and ensure reliable failure prognostics, this article proposes a degradation model updating framework for miter gates using normalizing flow-based likelihood-free inference, accounting for both model parameter uncertainty and model form uncertainty (i.e., model bias). The proposed work consists of two phases: the offline training phase and the online updating phase. During the offline training phase, the unknown model bias term is modeled as a random noise with uncertain standard deviation. Synthetic data are then generated using a physical model based on prior knowledge of the uncertain model parameters and model bias. The synthetic data are utilized to train an inference model, which has a summary network for data compression and a conditional invertible neural network for parameter estimation. In the online updating phase, the trained inference model uses strain observations to obtain posterior samples. The Gaussian mixture model and dual particle filter techniques are utilized to recursively update posterior samples, thereby improving the estimation accuracy. Subsequently, model bias is inversely estimated using the degradation model, which uses the updated model parameters and the gap length from the inference model. Following that, a regression model is constructed to correct the biases inherent in the simplified degradation model. This process is implemented iteratively over time to perform continuous model updating and failure prognostics. Results of a case study demonstrate the efficacy of the proposed framework in reducing both model parameter uncertainty and recovering model biases and thereby improving the accuracy of failure prognostics of miter gates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
2秒前
舒心豪英完成签到 ,获得积分10
16秒前
茶茶完成签到,获得积分10
1分钟前
1分钟前
mingshan1018完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
方方别方应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
mingshan1018发布了新的文献求助50
2分钟前
2分钟前
3分钟前
daiyu发布了新的文献求助10
3分钟前
上官若男应助daiyu采纳,获得10
3分钟前
3分钟前
研友_VZG7GZ应助爱听歌笑寒采纳,获得10
4分钟前
英姑应助shun采纳,获得30
4分钟前
4分钟前
4分钟前
Joeswith完成签到,获得积分10
5分钟前
5分钟前
5分钟前
淡淡的元霜完成签到,获得积分10
5分钟前
藤椒辣鱼应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
dingbeicn完成签到,获得积分10
6分钟前
诺奖离我十万八千里完成签到,获得积分10
6分钟前
6分钟前
柒月发布了新的文献求助10
6分钟前
柒月完成签到,获得积分10
7分钟前
华仔应助渊思采纳,获得10
7分钟前
7分钟前
渊思发布了新的文献求助10
7分钟前
渊思完成签到,获得积分10
7分钟前
blenx完成签到,获得积分10
8分钟前
8分钟前
yulia完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045935
关于积分的说明 9003702
捐赠科研通 2734577
什么是DOI,文献DOI怎么找? 1500058
科研通“疑难数据库(出版商)”最低求助积分说明 693318
邀请新用户注册赠送积分活动 691454