Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes

热稳定性 钩子 分子动力学 理论(学习稳定性) 化学 循环(图论) 蛋白质稳定性 蛋白质工程 生化工程 生物化学 计算化学 计算机科学 工程类 数学 结构工程 组合数学 机器学习
作者
Wenya Chong,Zihan Zhang,Zhongyu Li,Shuaiqi Meng,Binbin Nian,Yi Hu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:278: 134953-134953 被引量:7
标识
DOI:10.1016/j.ijbiomac.2024.134953
摘要

The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao完成签到,获得积分10
刚刚
1秒前
MAX33完成签到,获得积分20
1秒前
1秒前
yang完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
迅速的代桃完成签到,获得积分10
1秒前
江风海韵完成签到,获得积分10
1秒前
2秒前
罐罐儿应助MNing采纳,获得10
2秒前
桐桐应助小所采纳,获得10
2秒前
DAI正杰发布了新的文献求助10
2秒前
朴实的母鸡完成签到,获得积分10
2秒前
跳跃小伙完成签到 ,获得积分10
3秒前
科研老兵完成签到,获得积分10
3秒前
电化学小生完成签到,获得积分10
3秒前
sulyspr发布了新的文献求助10
3秒前
Night完成签到,获得积分10
3秒前
4秒前
着急的小松鼠完成签到,获得积分10
4秒前
4秒前
Qianyun完成签到,获得积分10
5秒前
5秒前
刘小天完成签到,获得积分10
5秒前
5秒前
5秒前
dongjh发布了新的文献求助10
5秒前
星辰大海应助复杂易形采纳,获得10
6秒前
狄秋白完成签到,获得积分10
6秒前
6秒前
7秒前
zhanfan321完成签到,获得积分10
8秒前
刘成发布了新的文献求助30
8秒前
逗逗完成签到,获得积分10
8秒前
好好好完成签到 ,获得积分10
8秒前
8秒前
华仔应助WenyHe采纳,获得10
8秒前
顺利的伊完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570