已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes

热稳定性 钩子 分子动力学 理论(学习稳定性) 化学 循环(图论) 蛋白质稳定性 蛋白质工程 生化工程 生物化学 计算化学 计算机科学 工程类 数学 结构工程 组合数学 机器学习
作者
Wenya Chong,Zihan Zhang,Zhongyu Li,Shuaiqi Meng,Binbin Nian,Yi Hu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:278: 134953-134953
标识
DOI:10.1016/j.ijbiomac.2024.134953
摘要

The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Olivia采纳,获得10
1秒前
2秒前
万能图书馆应助惊涛骇浪采纳,获得10
3秒前
3秒前
顾矜应助Rcs采纳,获得10
5秒前
bkagyin应助忧郁的寻冬采纳,获得10
7秒前
balzacsun发布了新的文献求助10
8秒前
CipherSage应助未来可期采纳,获得30
9秒前
千柳发布了新的文献求助30
10秒前
13秒前
丘比特应助balzacsun采纳,获得10
14秒前
14秒前
JazzWon完成签到,获得积分10
16秒前
19秒前
Ava应助sisters20001采纳,获得10
19秒前
Chelsea完成签到,获得积分10
20秒前
20秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得20
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
五十一笑声应助wang采纳,获得10
22秒前
调研昵称发布了新的文献求助10
22秒前
不安的猫咪完成签到,获得积分10
25秒前
chengwang发布了新的文献求助10
26秒前
爆米花应助聪明小虾米采纳,获得10
30秒前
SciGPT应助糖炒柿子采纳,获得10
31秒前
sy发布了新的文献求助10
31秒前
33秒前
38秒前
852应助Daisy666采纳,获得20
40秒前
41秒前
无欲无求,有容乃大完成签到,获得积分10
41秒前
41秒前
共享精神应助Marvin采纳,获得10
43秒前
44秒前
芝麻发布了新的文献求助10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146415
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825766
捐赠科研通 2454165
什么是DOI,文献DOI怎么找? 1306196
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503