Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes

热稳定性 钩子 分子动力学 理论(学习稳定性) 化学 循环(图论) 蛋白质稳定性 蛋白质工程 生化工程 生物化学 计算化学 计算机科学 工程类 数学 结构工程 组合数学 机器学习
作者
Wenya Chong,Zihan Zhang,Zhongyu Li,Shuaiqi Meng,Binbin Nian,Yi Hu
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:278: 134953-134953 被引量:7
标识
DOI:10.1016/j.ijbiomac.2024.134953
摘要

The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是danoo发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助30
4秒前
活力妙芙完成签到 ,获得积分10
4秒前
serapy完成签到,获得积分10
4秒前
5秒前
大个应助焦恩俊采纳,获得10
6秒前
酷波er应助执着皮皮虾采纳,获得10
6秒前
小叶子发布了新的文献求助10
6秒前
6秒前
大个应助liuliu采纳,获得10
7秒前
7秒前
11完成签到,获得积分10
8秒前
8秒前
9秒前
今夜有雨完成签到 ,获得积分10
10秒前
10秒前
桐桐应助根深者叶茂采纳,获得10
10秒前
ballball233发布了新的文献求助10
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
kingwill发布了新的文献求助30
11秒前
克劳修斯发布了新的文献求助10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得100
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
blue完成签到,获得积分10
13秒前
研友_Z6Qrbn发布了新的文献求助10
15秒前
Panda完成签到,获得积分10
16秒前
16秒前
19秒前
天空之下发布了新的文献求助10
19秒前
19秒前
小豆芽完成签到,获得积分10
19秒前
无花果应助zxd采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920