Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes

热稳定性 钩子 分子动力学 理论(学习稳定性) 化学 循环(图论) 蛋白质稳定性 蛋白质工程 生化工程 生物化学 计算化学 计算机科学 工程类 数学 结构工程 机器学习 组合数学
作者
Wenya Chong,Zihan Zhang,Zhongyu Li,Shuaiqi Meng,Binbin Nian,Yi Hu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:278: 134953-134953
标识
DOI:10.1016/j.ijbiomac.2024.134953
摘要

The improvement of enzyme thermostability often accompanies the decreased activity due to the loss of the key regions' flexibility. As a representative structure, unlocking the potential of loop dynamics will not only provide new ideas for stabilization strategies, but also help to deepen the understanding of the relationship between enzyme structural dynamics and function. In this study, a creative "hook loop dynamics engineering" (HLoD) strategy was successfully proposed for simultaneously improving the thermostability and maintaining activity of the model enzyme, Candida Antarctica lipase B. A small and smart mutant library involving five key residues located at the "hook loop" was meticulously identified and systematically investigated and thus yielded a five-point multiple mutant M1 (L147S/T244P/S250P/T256D/N292D), demonstrating a remarkable 7.0-fold increase in thermostability at 60 °C compared to the wild-type (WT). Furthermore, the activity of M1 remained comparable to that of WT, effectively transcending the barrier of activity-stability trade-off. Molecular dynamics simulations revealed that the precise regulation of hook loop dynamics via intermolecular interactions, such as salt bridges and hydrogen bonding, curbed the excessive flexibility of the pivotal regions α5 and α10 at high temperatures, thus driving the substantial enhancement of the thermostability of M1. Refining the dynamics of the flexible region via HLoD, which transcended the barrier of activity-stability trade-off, exhibited to be a robust and potentially universal strategy for designing enzymes with outstanding thermostability and activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
啾啾咪咪完成签到,获得积分10
3秒前
Yiyiy完成签到,获得积分10
3秒前
健忘的牛排完成签到,获得积分10
4秒前
Sherry完成签到,获得积分10
5秒前
烟花应助Shandongdaxiu采纳,获得10
6秒前
酷波er应助Jiang采纳,获得10
7秒前
8567612发布了新的文献求助10
8秒前
8秒前
聪明的小海豚完成签到,获得积分10
9秒前
幼萱完成签到,获得积分10
10秒前
11秒前
春风得意完成签到,获得积分10
12秒前
三子发布了新的文献求助10
13秒前
柚子发布了新的文献求助10
13秒前
13秒前
CodeCraft应助顺利毕业采纳,获得10
14秒前
好好学习完成签到 ,获得积分10
15秒前
丘比特应助lg20010419采纳,获得10
16秒前
转圈晕倒完成签到,获得积分10
16秒前
cctv18应助要减肥的源智采纳,获得10
17秒前
赘婿应助Jim luo采纳,获得10
18秒前
18秒前
llhh2024发布了新的文献求助10
18秒前
lkl完成签到,获得积分10
18秒前
19秒前
Akim应助小脸红扑扑采纳,获得10
20秒前
20秒前
21秒前
转圈晕倒发布了新的文献求助20
22秒前
22秒前
生信精准科研完成签到,获得积分10
22秒前
隐形曼青应助ALBRAHEEIBRAHIM采纳,获得10
25秒前
科研虫完成签到,获得积分20
27秒前
28秒前
hkh发布了新的文献求助10
28秒前
28秒前
要减肥的源智完成签到,获得积分20
29秒前
高分求助中
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
PROJECT STUDIES; -A LATE MODERN UNIVERSITY REFORM? 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3057772
求助须知:如何正确求助?哪些是违规求助? 2714072
关于积分的说明 7439066
捐赠科研通 2359232
什么是DOI,文献DOI怎么找? 1249940
科研通“疑难数据库(出版商)”最低求助积分说明 607315
版权声明 596334