天麻素
氧化应激
串扰
炎症
医学
缺血性中风
药理学
缺血
免疫学
化学
内科学
色谱法
光学
物理
作者
Menglian Zhang,Yaowen Zhang,Jinyong Peng,Yingying Huang,Zipeng Gong,Huixin Lu,Lan Han,Dandan Wang
标识
DOI:10.1016/j.intimp.2024.113012
摘要
The pathway of Janus-activated kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) (termed as JAK2/STAT3) plays an active role in stroke-related inflammation induced by ischemic stress. Gastrodin, the primary compound in Gastrodia elata Bl, has been identified for its notable neuroprotective effects and demonstrated to ameliorate cerebral ischemia-reperfusion but its exact mechanisms governing this defense are still unclear. This study aims to investigate whether gastrodin can regulate mitochondrial function via the JAK2/STAT3 pathway to limit cerebral ischemia-reperfusion. In vivo, gastrodin significantly reduced infarct volume, improved neurobiological function, attenuated neuronal apoptosis, oxidative stress, mitochondrial impairment, mtDNA leakage, and inflammatory responses. At the cellular level, gastrodin administration rescued OGD/R-induced cell apoptosis, oxidative stress, and mitochondrial dysfunction. Mechanistically, gastrodin notably suppressed Toll-like receptor 9 (TLR9) expression, important for the recognition of disrupted endogenous DNA to produce inflammatory reactions. Furthermore, gastrodin mitigated inflammation by inhibiting JAK2/STAT3 signaling, influencing inflammatory factors to aggravate inflammation. Notably, the effects of gastrodin were abolished by Coumermycin A1 (C-A1), a JAK2 agonist, validating the role of JAK2/STAT3 signaling. In summary, gastrodin enhances the protective effect against mitochondrial damage in ischemic stroke by inhibiting JAK2/STAT3 signaling. Gastrodin is a possible therapy for cerebral ischemia.
科研通智能强力驱动
Strongly Powered by AbleSci AI