New Turbulent Prandtl Number Model for Liquid Metal Based on DNS Results

普朗特数 湍流 湍流普朗特数 磁普朗特数 计算机科学 统计物理学 物理 机械 雷诺数 努塞尔数 传热
作者
Hao Fu,Houjian Zhao,Xiaowei Li,Xinxin Wu,Xuefeng Lyu,Fang Liu,Yu Yu,Wei Xu
标识
DOI:10.1115/icone31-135583
摘要

Abstract Liquid metal is widely used as the primary coolant in many advanced nuclear energy systems. Prandtl number of liquid metal is much lower than the conventional coolant of water. Due to the high molecular thermal diffusion coefficients of liquid metal, the thermal conduction dominated region of liquid metal is much thicker than that of water. Logarithmic region for dimensionless temperature in the cross section is diminished due to the low Prandtl number effects. Conventional Nusselt number correlations derived from the logarithmic temperature distribution can not be used for liquid metal. For conventional coolant of water or air, the turbulent momentum field is similar with turbulent scalar field. Based on Reynolds analogy, the turbulent Prandtl number is assumed as one for the Reynolds Averaged Navier Stokes method. For turbulent convection of liquid metal, dissipations of turbulent scalar energies are larger than that of turbulent kinetic energies. Dissimilarity between the thermal and momentum field increases with the decreasing of Prandtl number. For turbulent convection of liquid metal, the turbulent Prandtl number is larger than one. In the current investigation, turbulent convection of liquid metal in channel is directly simulated with OpenFOAM. Turbulent statistics of the momentum and the thermal field are compared with the existed database to validate the numerical model. Power law for dimensionless temperature distribution with different Prandtl number is obtained by regression analysis of DNS results. New Nusselt number correlation is derived based on the power law of temperature distribution. The new Nusselt number correlation agrees well with the DNS results in the literature. Using the method of order magnitude analysis, relationships between the turbulent heat flux and turbulent scalar energy is analysed. Turbulent scalar energy is used to calculate the turbulent thermal diffusion coefficients. New correlation is proposed to consider Prandtl number effects on dissimilarity between the turbulent kinetic energy and the turbulent scalar energy. Then, new turbulent Prandtl number model for liquid metal is obtained. Combined with SST turbulence model, numerical results with the new turbulent Prandtl number model agree well with DNS results. The new Prandtl number model can be used for turbulent convection with different Prandtl number and with different Reynolds number.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力鸡完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Jerome发布了新的文献求助10
2秒前
布曲完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
coollzl完成签到 ,获得积分10
5秒前
小王完成签到 ,获得积分10
6秒前
7秒前
一水独流完成签到,获得积分10
7秒前
百里幻翠完成签到,获得积分10
8秒前
搜集达人应助Jerome采纳,获得10
8秒前
凡事发生必有利于我完成签到,获得积分10
10秒前
今后应助chunyan_sysu采纳,获得10
10秒前
11秒前
逍遥子完成签到,获得积分10
12秒前
完美世界应助大狒狒采纳,获得10
13秒前
尤瑟夫完成签到 ,获得积分10
13秒前
大气思柔完成签到 ,获得积分10
13秒前
ccc完成签到,获得积分10
14秒前
wjw发布了新的文献求助10
14秒前
壁虎君完成签到,获得积分10
15秒前
15秒前
Chase完成签到,获得积分10
16秒前
杨玲完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
尚影芷完成签到,获得积分10
18秒前
Liu完成签到 ,获得积分10
19秒前
林好人完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
枕月听松完成签到,获得积分10
20秒前
chunyan_sysu完成签到,获得积分10
20秒前
ninaxieuuu发布了新的文献求助10
21秒前
马淑贤完成签到 ,获得积分10
21秒前
研友_Ljb0qL完成签到,获得积分10
21秒前
mengmenglv完成签到 ,获得积分0
22秒前
Tristan完成签到 ,获得积分10
23秒前
3sigma完成签到,获得积分10
25秒前
个性的抽象完成签到 ,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071