Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance

脑-机接口 脑电图 计算机科学 鉴别器 噪音(视频) 降噪 人工智能 任务(项目管理) 模式识别(心理学) 卷积神经网络 接口(物质) 信噪比(成像) 语音识别 工程类 图像(数学) 最大气泡压力法 气泡 精神科 并行计算 系统工程 探测器 电信 心理学
作者
Pu Zeng,Liangwei Fan,You Xin Luo,Hui Shen,Dewen Hu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
被引量:2
标识
DOI:10.1088/1741-2552/ad8963
摘要

Abstract Objective. 
The quality of electroencephalogram (EEG) signals directly impacts the performance of brain-computer interface (BCI) tasks. Many methods have been proposed to eliminate noise from EEG signals, but most of these methods focus solely on signal denoising itself, disregarding the impact on subsequent tasks, which deviates from the original intention of EEG denoising. The main objective of this study is to optimize EEG denoising models with a purpose of improving the performance of BCI tasks.
Approach.
To this end, we proposed an innovative Task-Oriented EEG Denoising Generative Adversarial Network (TOED-GAN) method. This network utilizes the generator of GAN to decompose and reconstruct clean signals from the raw EEG signals, and the discriminator to learn to distinguish the generated signals from the true clean signals, resulting in a remarkable increase of the signal-to-noise ratio (SNR) by simultaneously enhancing task-related components and removing task-irrelevant noise from the original contaminated signals.
Main results.
We evaluated the performance of the model on a public dataset and a self-collected dataset respectively, with canonical correlation analysis (CCA) classification tasks of the steady-state visual evoked potential (SSVEP) based BCI. Experimental results demonstrate that TOED-GAN exhibits excellent performance in removing EEG noise and improving performance for SSVEP-BCI, with accuracy improvement rates reaching 18.47% and 21.33% in contrast to the baseline methods of convolutional neural networks, respectively
Significance.
This work proves that the proposed TOED-GAN, as an EEG denoising method tailored for SSVEP tasks, contributes to enhancing the performance of BCIs in practical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年糕菌发布了新的文献求助50
1秒前
1秒前
腼腆的小熊猫完成签到,获得积分10
1秒前
2秒前
yys10l完成签到,获得积分10
2秒前
海东来应助林橙采纳,获得30
2秒前
wowozyy发布了新的文献求助10
2秒前
3秒前
LSY完成签到,获得积分10
3秒前
赵雪萌完成签到,获得积分10
3秒前
4秒前
123完成签到 ,获得积分10
4秒前
乐乐应助LYJ采纳,获得10
4秒前
Akim应助瓜兮兮CYY采纳,获得10
5秒前
5秒前
5秒前
高文雅发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
DrugRD发布了新的文献求助10
8秒前
9秒前
英姑应助兴奋的白桃采纳,获得10
10秒前
10秒前
10秒前
10秒前
WYB0313发布了新的文献求助10
10秒前
10秒前
11秒前
轻松小之发布了新的文献求助10
11秒前
aaa慧完成签到 ,获得积分10
11秒前
12秒前
12秒前
123完成签到,获得积分10
12秒前
nihao发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966589
求助须知:如何正确求助?哪些是违规求助? 3512031
关于积分的说明 11161353
捐赠科研通 3246821
什么是DOI,文献DOI怎么找? 1793510
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420