Task-oriented EEG denoising generative adversarial network for enhancing SSVEP-BCI performance

脑-机接口 脑电图 计算机科学 鉴别器 噪音(视频) 降噪 人工智能 任务(项目管理) 模式识别(心理学) 卷积神经网络 接口(物质) 信噪比(成像) 语音识别 工程类 图像(数学) 最大气泡压力法 气泡 精神科 并行计算 系统工程 探测器 电信 心理学
作者
Pu Zeng,Liangwei Fan,You Xin Luo,Hui Shen,Dewen Hu
出处
期刊:Journal of Neural Engineering [IOP Publishing]
被引量:2
标识
DOI:10.1088/1741-2552/ad8963
摘要

Abstract Objective. 
The quality of electroencephalogram (EEG) signals directly impacts the performance of brain-computer interface (BCI) tasks. Many methods have been proposed to eliminate noise from EEG signals, but most of these methods focus solely on signal denoising itself, disregarding the impact on subsequent tasks, which deviates from the original intention of EEG denoising. The main objective of this study is to optimize EEG denoising models with a purpose of improving the performance of BCI tasks.
Approach.
To this end, we proposed an innovative Task-Oriented EEG Denoising Generative Adversarial Network (TOED-GAN) method. This network utilizes the generator of GAN to decompose and reconstruct clean signals from the raw EEG signals, and the discriminator to learn to distinguish the generated signals from the true clean signals, resulting in a remarkable increase of the signal-to-noise ratio (SNR) by simultaneously enhancing task-related components and removing task-irrelevant noise from the original contaminated signals.
Main results.
We evaluated the performance of the model on a public dataset and a self-collected dataset respectively, with canonical correlation analysis (CCA) classification tasks of the steady-state visual evoked potential (SSVEP) based BCI. Experimental results demonstrate that TOED-GAN exhibits excellent performance in removing EEG noise and improving performance for SSVEP-BCI, with accuracy improvement rates reaching 18.47% and 21.33% in contrast to the baseline methods of convolutional neural networks, respectively
Significance.
This work proves that the proposed TOED-GAN, as an EEG denoising method tailored for SSVEP tasks, contributes to enhancing the performance of BCIs in practical application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dai完成签到,获得积分10
刚刚
1秒前
echosnooow发布了新的文献求助10
1秒前
文艺的幼菱完成签到,获得积分10
2秒前
bkagyin应助0717采纳,获得10
2秒前
可耐的靖完成签到,获得积分10
3秒前
3秒前
123完成签到,获得积分10
3秒前
核桃应助收拾收拾采纳,获得10
3秒前
Dai发布了新的文献求助10
3秒前
4秒前
呆呆发布了新的文献求助10
5秒前
斯文败类应助T拐拐采纳,获得10
5秒前
在水一方应助烟酒僧采纳,获得10
5秒前
5秒前
FashionBoy应助jingdaitianxiang采纳,获得10
7秒前
万幸鹿发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
英俊的铭应助七两碎银子采纳,获得30
7秒前
打打应助奔跑的胰岛素采纳,获得10
7秒前
大约在冬季完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
8秒前
奈落发布了新的文献求助10
8秒前
贪玩小蘑菇完成签到 ,获得积分10
8秒前
10秒前
mark发布了新的文献求助10
11秒前
薛冰雪完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
0717完成签到,获得积分10
12秒前
12秒前
端庄的煎蛋完成签到,获得积分0
12秒前
今天也要开心Y完成签到,获得积分10
13秒前
jojo完成签到 ,获得积分10
14秒前
无花果应助LHP采纳,获得10
14秒前
14秒前
14秒前
堇色完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763