Overturning CO2 Hydrogenation Selectivity by Tailoring the Local Electron Density of Ru/CeO2 Catalysts

催化作用 甲烷化 选择性 格式化 电子效应 光化学 化学 电子受体 材料科学 组合化学 有机化学
作者
Yu Xie,Jianjun Chen,Junjie Wen,Zonglin Li,Fangxian Cao,Sai Zhang,Qiming Sun,Ping Ning,Qiulin Zhang,Jiming Hao
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:14 (16): 12214-12224 被引量:13
标识
DOI:10.1021/acscatal.4c03094
摘要

Flexible tuning of the CO2 hydrogenation selectivity through properly designed catalysts to obtain desired high-added-value products is a promising strategy for addressing environmental and energy issues but also a huge challenge. Herein, the CO2 hydrogenation selectivity over the commonly used Ru/CeO2 methanation catalysts was facilely overturned from ∼99% CH4 to 100% CO by tailoring the local electron density of Ru through electronic interaction induced by electron acceptors (Bi, In, Sn, etc.). Systematically, in situ spectroscopic characterizations and DFT calculations reveal that owing to the electron-withdrawing role of the electron acceptor, Ru sites lose more charges than the unmodified catalyst, which weakens the binding strength of carbonyl to Ru sites and further induces the imbalance reaction energy barrier for carbonyl and formate intermediates. Thus, the original parallel reaction processes involving CH4 generation (carbonyl route and formate route) are transformed into the preferential desorption of CO, finally acquiring opposite selectivity. Importantly, such an electronic interaction is general for overturning product selectivity and can be extended to other Ru catalysts and Ni catalysts. This discovery may offer a promising way to develop CO2 hydrogenation catalysts with controllable product selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真浩宇发布了新的文献求助10
刚刚
坚强小虾米完成签到,获得积分10
刚刚
刚刚
1秒前
zzztsing0213完成签到,获得积分10
1秒前
sxmt123456789发布了新的文献求助30
2秒前
2秒前
jingxu发布了新的文献求助10
3秒前
nsk发布了新的文献求助10
4秒前
畅快的觅风完成签到,获得积分10
4秒前
5秒前
sxs发布了新的文献求助10
5秒前
慕青应助坚强小虾米采纳,获得10
5秒前
沉默海完成签到,获得积分10
5秒前
Steven完成签到 ,获得积分10
5秒前
科研通AI6应助山雷采纳,获得10
6秒前
桐桐应助小张在努力采纳,获得10
6秒前
酷波er应助sci大户采纳,获得10
7秒前
ding应助DrLee采纳,获得10
7秒前
7秒前
SciGPT应助刘丰铭采纳,获得10
7秒前
qitengzhu发布了新的文献求助10
7秒前
刘霆勋发布了新的文献求助10
7秒前
英姑应助SY采纳,获得10
8秒前
小张同学发布了新的文献求助10
9秒前
10秒前
司藤完成签到 ,获得积分10
10秒前
隐形曼青应助wanduzi采纳,获得10
11秒前
Hello应助一杯甜酒采纳,获得10
11秒前
11秒前
忧伤的觅珍完成签到,获得积分10
13秒前
13秒前
李hy发布了新的文献求助10
14秒前
研友_VZG7GZ应助刘霆勋采纳,获得10
14秒前
科研通AI6应助李俊杰采纳,获得30
15秒前
15秒前
秘密发布了新的文献求助10
15秒前
15秒前
15秒前
情怀应助好名字采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809