An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 哲学 计算机安全 认识论 生物
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:366: 121932-121932 被引量:1
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助伍思光采纳,获得10
刚刚
1秒前
1秒前
Lyn发布了新的文献求助10
1秒前
lizhen发布了新的文献求助10
3秒前
FashionBoy应助怕孤单的破茧采纳,获得10
3秒前
slj发布了新的文献求助10
4秒前
zpeng完成签到,获得积分10
5秒前
1区冲啊完成签到,获得积分10
6秒前
眨眨眼完成签到,获得积分20
7秒前
丘比特应助ZY采纳,获得10
8秒前
8秒前
贰鸟应助drzz采纳,获得10
9秒前
10秒前
10秒前
lizhen完成签到,获得积分10
11秒前
英俊的铭应助lalala采纳,获得10
12秒前
善学以致用应助jessiefuli采纳,获得10
12秒前
12秒前
打打应助认真跳跳糖采纳,获得10
12秒前
淡定荧完成签到,获得积分10
12秒前
随波逐流完成签到,获得积分10
13秒前
hhh发布了新的文献求助10
13秒前
YUMI发布了新的文献求助10
13秒前
13秒前
张部长发布了新的文献求助10
14秒前
善学以致用应助郭志倩采纳,获得10
14秒前
奥特超曼应助幽默贞采纳,获得10
15秒前
幸福大白发布了新的文献求助10
15秒前
xyx发布了新的文献求助10
15秒前
积极的誉发布了新的文献求助10
16秒前
Georges-09发布了新的文献求助10
17秒前
xn201120发布了新的文献求助10
17秒前
好好好发布了新的文献求助10
18秒前
小哈完成签到,获得积分20
19秒前
顾矜应助我的小宝贝采纳,获得10
19秒前
ioio发布了新的文献求助20
20秒前
21秒前
幸福大白发布了新的文献求助30
24秒前
优秀的凌波完成签到,获得积分20
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176