An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
艳艳子发布了新的文献求助10
2秒前
歪歪扣叉给歪歪扣叉的求助进行了留言
5秒前
1571424272完成签到,获得积分10
7秒前
7秒前
LTDJYYD完成签到,获得积分10
7秒前
Alice完成签到,获得积分10
7秒前
科研通AI6应助艳艳子采纳,获得10
8秒前
朱光辉发布了新的文献求助10
8秒前
9秒前
1_1完成签到,获得积分10
9秒前
柘苓完成签到 ,获得积分10
10秒前
WZzz完成签到 ,获得积分10
11秒前
可爱的函函应助老实善愁采纳,获得10
11秒前
冷知识发布了新的文献求助50
13秒前
JZW发布了新的文献求助10
13秒前
14秒前
花花完成签到,获得积分10
16秒前
东晓完成签到,获得积分10
18秒前
18秒前
学学学完成签到 ,获得积分10
18秒前
李欣完成签到,获得积分10
18秒前
Arthur完成签到,获得积分10
19秒前
19秒前
lgj666发布了新的文献求助10
21秒前
开心完成签到 ,获得积分10
21秒前
23秒前
小齐爱科研完成签到,获得积分10
23秒前
24秒前
24秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
romy完成签到,获得积分10
28秒前
友芸完成签到 ,获得积分10
28秒前
shanshan完成签到 ,获得积分10
29秒前
李欣发布了新的文献求助10
29秒前
dasheng_发布了新的文献求助10
30秒前
30秒前
Rimbaud完成签到 ,获得积分10
30秒前
丰富的含巧完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352