An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莓莓MM完成签到 ,获得积分10
1秒前
念之完成签到 ,获得积分10
1秒前
筱xiao完成签到,获得积分10
4秒前
PhD_Ren完成签到,获得积分10
7秒前
yyy完成签到,获得积分10
9秒前
落后如彤完成签到,获得积分10
14秒前
15秒前
16秒前
vivi完成签到 ,获得积分10
16秒前
啵啵阳子完成签到,获得积分10
17秒前
潮湿小兰花完成签到,获得积分10
18秒前
19秒前
19秒前
飞流直下发布了新的文献求助10
20秒前
waws完成签到,获得积分10
23秒前
我是老大应助柳叶刀采纳,获得10
24秒前
25秒前
执着的一兰完成签到,获得积分10
25秒前
飞流直下完成签到,获得积分20
25秒前
26秒前
天天摸鱼完成签到,获得积分10
26秒前
美满平松发布了新的文献求助10
31秒前
李大胖胖完成签到 ,获得积分10
31秒前
小西瓜完成签到 ,获得积分10
31秒前
学术大亨完成签到,获得积分10
34秒前
科研通AI6应助Yuki采纳,获得30
36秒前
36秒前
脑洞疼应助HanJinyu采纳,获得30
36秒前
sssss发布了新的文献求助10
40秒前
HH完成签到,获得积分10
41秒前
柳叶刀发布了新的文献求助10
41秒前
QIQI完成签到,获得积分10
42秒前
43秒前
QIQI发布了新的文献求助10
47秒前
范米粒发布了新的文献求助10
48秒前
留无影完成签到,获得积分10
49秒前
乐乐应助hui采纳,获得10
51秒前
77完成签到,获得积分20
52秒前
sssss完成签到,获得积分10
52秒前
SciGPT应助aYXZ321采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565449
求助须知:如何正确求助?哪些是违规求助? 4650499
关于积分的说明 14691551
捐赠科研通 4592435
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463232