An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 哲学 计算机安全 认识论 生物
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:1
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
illusion完成签到,获得积分10
1秒前
insideplus完成签到,获得积分10
2秒前
nuliguan完成签到 ,获得积分10
2秒前
明理青寒完成签到,获得积分10
3秒前
wsh发布了新的文献求助10
3秒前
星河完成签到,获得积分10
4秒前
你好呀发布了新的文献求助10
4秒前
5秒前
风再起时完成签到,获得积分10
6秒前
上官若男应助柿柿石榴籽采纳,获得10
7秒前
科研通AI2S应助符怜雪采纳,获得10
7秒前
ChouNen完成签到,获得积分10
7秒前
合适醉蝶完成签到 ,获得积分10
8秒前
retortt完成签到,获得积分10
9秒前
盛事不朽完成签到 ,获得积分10
17秒前
18秒前
wnche完成签到,获得积分10
19秒前
要发核心刊的阿爽完成签到,获得积分10
20秒前
单薄惜文应助wsh采纳,获得10
20秒前
郑嘻嘻完成签到,获得积分10
21秒前
strive完成签到 ,获得积分10
22秒前
22秒前
zby发布了新的文献求助10
26秒前
xianyu完成签到,获得积分10
28秒前
多罗罗完成签到,获得积分10
31秒前
一啊呀完成签到,获得积分20
35秒前
Orange应助你好呀采纳,获得10
35秒前
单薄乐珍完成签到 ,获得积分10
37秒前
wentong完成签到,获得积分10
42秒前
42秒前
快乐小菜瓜完成签到 ,获得积分10
45秒前
47秒前
ZYQ完成签到 ,获得积分10
49秒前
尚可完成签到 ,获得积分10
50秒前
Mtoc完成签到 ,获得积分10
50秒前
小二郎应助zby采纳,获得10
51秒前
laola发布了新的文献求助10
52秒前
Lyn应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
小二郎应助科研通管家采纳,获得10
52秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242069
求助须知:如何正确求助?哪些是违规求助? 2886379
关于积分的说明 8243158
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383200
科研通“疑难数据库(出版商)”最低求助积分说明 649672
邀请新用户注册赠送积分活动 625417