An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 哲学 计算机安全 认识论 生物
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:1
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代书雪完成签到,获得积分10
刚刚
Hidden完成签到,获得积分10
1秒前
yu完成签到 ,获得积分10
1秒前
赘婿应助灯灯采纳,获得10
2秒前
2秒前
HL发布了新的文献求助10
3秒前
默默松鼠完成签到,获得积分10
4秒前
岳阳张震岳完成签到,获得积分10
5秒前
大模型应助空城旧梦采纳,获得10
5秒前
HL完成签到,获得积分10
10秒前
11秒前
搜集达人应助饱满若灵采纳,获得10
11秒前
11秒前
LL完成签到,获得积分10
11秒前
Akim应助haha采纳,获得10
11秒前
12秒前
ZZ关注了科研通微信公众号
13秒前
13秒前
13秒前
13秒前
李尧发布了新的文献求助10
14秒前
14秒前
day发布了新的文献求助10
15秒前
16秒前
17秒前
热情爆米花完成签到 ,获得积分10
17秒前
科研通AI2S应助甜蜜秋蝶采纳,获得10
18秒前
19秒前
19秒前
张杰发布了新的文献求助10
19秒前
搜集达人应助mmyhn采纳,获得10
20秒前
20秒前
lithion发布了新的文献求助10
21秒前
unchanged完成签到,获得积分10
21秒前
安心完成签到,获得积分10
22秒前
蔡莹完成签到 ,获得积分10
22秒前
李尧完成签到,获得积分10
22秒前
突然好想你_1017完成签到,获得积分10
23秒前
23秒前
Vency应助Jas采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288530
求助须知:如何正确求助?哪些是违规求助? 4440409
关于积分的说明 13824512
捐赠科研通 4322629
什么是DOI,文献DOI怎么找? 2372687
邀请新用户注册赠送积分活动 1368119
关于科研通互助平台的介绍 1331979