An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏新天完成签到 ,获得积分10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
Liangang应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
huanger应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
小新应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
一叶知秋应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
3秒前
跳跃的翼完成签到,获得积分10
6秒前
健忘可愁完成签到,获得积分10
7秒前
跳跃的翼发布了新的文献求助10
8秒前
9秒前
无花果应助加百莉采纳,获得10
12秒前
13秒前
Wqian发布了新的文献求助10
14秒前
17秒前
18秒前
CipherSage应助朴素的松采纳,获得10
18秒前
香菜大王完成签到 ,获得积分10
19秒前
Quanta发布了新的文献求助10
19秒前
嘻嘻哈哈发布了新的文献求助10
21秒前
22秒前
深情安青应助keyanxiaobaishu采纳,获得10
23秒前
inter发布了新的文献求助10
24秒前
SnownS发布了新的文献求助20
27秒前
28秒前
orixero应助杰果采纳,获得10
29秒前
33秒前
34秒前
bkagyin应助蓝莓西西果冻采纳,获得10
34秒前
Jodie发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550