An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Orange应助聪明新梅采纳,获得10
2秒前
2秒前
Mashiro发布了新的文献求助10
2秒前
Zhang发布了新的文献求助10
2秒前
JM发布了新的文献求助10
2秒前
朱云发布了新的文献求助10
3秒前
杨佳宁发布了新的文献求助10
3秒前
十号发布了新的文献求助10
4秒前
落后的乌龟应助小太阳采纳,获得10
4秒前
4秒前
领导范儿应助shu采纳,获得10
4秒前
chemchen完成签到,获得积分10
4秒前
HZH完成签到,获得积分10
4秒前
圆圆901234发布了新的文献求助30
5秒前
6秒前
花粉过敏完成签到,获得积分10
7秒前
KXQ发布了新的文献求助10
7秒前
科研通AI2S应助敲敲采纳,获得10
7秒前
霜序完成签到,获得积分10
8秒前
水蔓菁完成签到,获得积分10
8秒前
momo完成签到 ,获得积分10
8秒前
8秒前
8秒前
还单身的老虎完成签到,获得积分10
8秒前
Mashiro完成签到,获得积分10
8秒前
无花果应助优雅的听兰采纳,获得10
9秒前
真实的南琴完成签到,获得积分10
10秒前
10秒前
勤奋白昼完成签到,获得积分20
10秒前
CodeCraft应助gan采纳,获得10
11秒前
英俊的铭应助0000采纳,获得10
11秒前
11秒前
xxx发布了新的文献求助10
13秒前
13秒前
yang发布了新的文献求助30
13秒前
李爱国应助KXQ采纳,获得10
13秒前
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049