An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
strongfrog发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
灰灰成长中完成签到,获得积分10
1秒前
1秒前
今后应助温柔樱桃采纳,获得10
2秒前
高媛完成签到,获得积分20
3秒前
yuko完成签到 ,获得积分10
3秒前
3秒前
4秒前
俊逸若之完成签到,获得积分10
4秒前
Jasper应助xryhhh采纳,获得10
4秒前
烟花应助轻歌水越采纳,获得10
5秒前
5秒前
5秒前
DY发布了新的文献求助10
6秒前
张瑜发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
嘿嘿嘿发布了新的文献求助10
7秒前
细腻亦巧完成签到,获得积分10
7秒前
wang完成签到,获得积分10
7秒前
星河梦枕完成签到,获得积分10
8秒前
sober关注了科研通微信公众号
8秒前
8秒前
GoGoGo完成签到,获得积分10
8秒前
高媛发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
Hello应助zhang采纳,获得10
9秒前
weixiao完成签到,获得积分20
11秒前
传奇3应助Betty采纳,获得10
11秒前
BowieHuang应助子暮采纳,获得10
11秒前
Yang发布了新的文献求助20
12秒前
77完成签到,获得积分10
12秒前
园游会发布了新的文献求助10
12秒前
weixiao发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836