An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周周发布了新的文献求助10
刚刚
1秒前
1秒前
思源应助渺渺采纳,获得10
1秒前
77发布了新的文献求助10
2秒前
Liens发布了新的文献求助10
2秒前
奋斗的紫易完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
顾南衣发布了新的文献求助10
6秒前
uiui完成签到,获得积分10
6秒前
李健应助药神L采纳,获得10
8秒前
Cici的新长征完成签到 ,获得积分10
8秒前
Genius发布了新的文献求助10
8秒前
追寻的夏波应助obito采纳,获得10
9秒前
科研通AI6应助周周周采纳,获得10
9秒前
11秒前
木木杨完成签到,获得积分10
12秒前
潇洒的冰淇淋完成签到,获得积分10
12秒前
13秒前
zzzzzzzzzzzz发布了新的文献求助10
13秒前
13秒前
Akim应助HUYAOWEI采纳,获得10
13秒前
无极微光应助HUYAOWEI采纳,获得20
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
深情的新儿完成签到,获得积分10
16秒前
虚幻的芷珊完成签到,获得积分10
17秒前
clio完成签到,获得积分10
17秒前
ri_290发布了新的文献求助10
18秒前
18秒前
所所应助耍酷问兰采纳,获得10
18秒前
scuter发布了新的文献求助10
18秒前
19秒前
渺渺发布了新的文献求助10
20秒前
jwjzsznb发布了新的文献求助50
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497