An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:366: 121932-121932 被引量:1
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史克珍香完成签到 ,获得积分10
4秒前
晓风完成签到,获得积分10
7秒前
CR完成签到 ,获得积分10
8秒前
mammer应助超帅无色采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
lilylwy完成签到 ,获得积分0
10秒前
li完成签到 ,获得积分10
10秒前
可爱的函函应助唐唐采纳,获得10
15秒前
小石头完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
21秒前
xiaoxiaoxingchen完成签到 ,获得积分10
21秒前
laohu完成签到,获得积分10
22秒前
风格完成签到,获得积分10
22秒前
大橙子发布了新的文献求助150
24秒前
八点必起完成签到,获得积分10
25秒前
sduweiyu完成签到 ,获得积分10
26秒前
hyf完成签到 ,获得积分10
27秒前
aldehyde应助芊芊要发SCI采纳,获得10
28秒前
Twinkle完成签到,获得积分10
30秒前
Eureka完成签到,获得积分10
32秒前
36秒前
浮熙完成签到 ,获得积分10
43秒前
笔芯完成签到,获得积分10
46秒前
看文献完成签到,获得积分0
48秒前
爱与感谢完成签到 ,获得积分10
50秒前
华仔应助大橙子采纳,获得10
51秒前
小帅完成签到,获得积分10
51秒前
man完成签到 ,获得积分10
52秒前
biofresh完成签到,获得积分10
54秒前
平凡完成签到,获得积分10
58秒前
59秒前
哈利波特完成签到,获得积分10
1分钟前
菓小柒完成签到 ,获得积分10
1分钟前
basil完成签到,获得积分10
1分钟前
大橙子发布了新的文献求助10
1分钟前
mammer应助超帅无色采纳,获得10
1分钟前
helloworld完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022