亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 哲学 计算机安全 认识论 生物
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辉夜折影完成签到,获得积分10
刚刚
忽晚完成签到 ,获得积分10
3秒前
NLJY完成签到,获得积分10
6秒前
10秒前
11秒前
葵葵完成签到,获得积分10
11秒前
子焱完成签到 ,获得积分10
14秒前
Xiong Siqi发布了新的文献求助10
14秒前
小刘完成签到,获得积分10
14秒前
111完成签到 ,获得积分10
16秒前
17秒前
CodeCraft应助葵葵采纳,获得10
19秒前
阿花阿花发布了新的文献求助10
22秒前
22秒前
火的信仰完成签到,获得积分10
23秒前
木有完成签到 ,获得积分10
23秒前
24秒前
26秒前
26秒前
雨寒完成签到 ,获得积分10
29秒前
英俊的铭应助qqxt采纳,获得10
29秒前
ssu90完成签到 ,获得积分10
30秒前
火的信仰发布了新的文献求助10
32秒前
37秒前
37秒前
英勇羿发布了新的文献求助10
37秒前
山楂发布了新的文献求助10
44秒前
大方的契发布了新的文献求助10
48秒前
婉莹完成签到 ,获得积分0
50秒前
牛八先生完成签到,获得积分10
50秒前
遥知马完成签到,获得积分10
53秒前
英勇羿发布了新的文献求助10
55秒前
58秒前
有点鸭梨呀完成签到 ,获得积分10
59秒前
英俊的铭应助高贵土豆采纳,获得10
1分钟前
慢慢发布了新的文献求助10
1分钟前
莫愁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助云枝采纳,获得10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454727
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284714
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973