亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
热情依白应助读书的时候采纳,获得10
21秒前
Mia233完成签到 ,获得积分10
30秒前
晞暝关注了科研通微信公众号
40秒前
晞暝发布了新的文献求助10
57秒前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
领导范儿应助Ahan采纳,获得10
1分钟前
激动的似狮完成签到,获得积分0
1分钟前
2分钟前
2分钟前
沉默念瑶完成签到 ,获得积分10
2分钟前
热情依白应助读书的时候采纳,获得10
2分钟前
2分钟前
siv发布了新的文献求助10
2分钟前
晞暝完成签到,获得积分10
2分钟前
2分钟前
王志新完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
文艺的乌龟完成签到,获得积分20
3分钟前
Criminology34应助文艺的乌龟采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
我是老大应助nullchuang采纳,获得10
4分钟前
4分钟前
4分钟前
Ji发布了新的文献求助30
4分钟前
nullchuang发布了新的文献求助10
4分钟前
4分钟前
桐桐应助何88888888采纳,获得10
4分钟前
Ji完成签到,获得积分10
4分钟前
4分钟前
Ahan发布了新的文献求助10
5分钟前
花城诚成发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688044
求助须知:如何正确求助?哪些是违规求助? 5062729
关于积分的说明 15193594
捐赠科研通 4846395
什么是DOI,文献DOI怎么找? 2598847
邀请新用户注册赠送积分活动 1550933
关于科研通互助平台的介绍 1509501