An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
2秒前
Rainlistener完成签到,获得积分10
3秒前
4秒前
7秒前
詹姆斯哈登完成签到,获得积分10
7秒前
DianaLee完成签到 ,获得积分10
10秒前
11秒前
11秒前
成为一只会科研的猫完成签到 ,获得积分10
12秒前
火星的雪完成签到 ,获得积分0
13秒前
fufufu123完成签到 ,获得积分10
13秒前
科研通AI6应助Davidjin采纳,获得10
14秒前
陈麦关注了科研通微信公众号
15秒前
淡然冬灵完成签到,获得积分10
15秒前
科研助理发布了新的文献求助10
16秒前
tangli完成签到 ,获得积分10
18秒前
CipherSage应助宜菏采纳,获得10
20秒前
jason完成签到 ,获得积分10
20秒前
恋恋青葡萄完成签到,获得积分10
21秒前
24秒前
ho完成签到,获得积分10
27秒前
LingYun完成签到,获得积分10
29秒前
yznfly应助ho采纳,获得200
32秒前
栖梧砚客完成签到 ,获得积分10
33秒前
刘歌完成签到 ,获得积分10
33秒前
Mercury完成签到 ,获得积分10
34秒前
贾方硕完成签到,获得积分10
34秒前
888完成签到,获得积分10
38秒前
Lincoln完成签到,获得积分10
39秒前
HCLonely完成签到,获得积分0
42秒前
科研通AI2S应助Muncy采纳,获得20
46秒前
量子星尘发布了新的文献求助10
48秒前
独特的秋完成签到 ,获得积分10
48秒前
吉吉国王完成签到 ,获得积分10
49秒前
51秒前
13633501455完成签到 ,获得积分10
52秒前
哎呀哎呀呀完成签到,获得积分10
53秒前
科研助理发布了新的文献求助10
54秒前
你好纠结伦完成签到,获得积分10
54秒前
wll1091完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086