An ensemble model for accurate prediction of key water quality parameters in river based on deep learning methods

钥匙(锁) 水质 集成学习 计算机科学 人工智能 质量(理念) 机器学习 环境科学 生态学 计算机安全 生物 认识论 哲学
作者
Yue Zheng,Jun Wei,Wenming Zhang,Yiping Zhang,Tuqiao Zhang,Yongchao Zhou
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:366: 121932-121932 被引量:35
标识
DOI:10.1016/j.jenvman.2024.121932
摘要

Deep learning models provide a more powerful method for accurate and stable prediction of water quality in rivers, which is crucial for the intelligent management and control of the water environment. To increase the accuracy of predicting the water quality parameters and learn more about the impact of complex spatial information based on deep learning models, this study proposes two ensemble models TNX (with temporal attention) and STNX (with spatio-temporal attention) based on seasonal and trend decomposition (STL) method to predict water quality using geo-sensory time series data. Dissolved oxygen, total phosphorus, and ammonia nitrogen were predicted in short-step (1 h, and 2 h) and long-step (12 h, and 24 h) with seven water quality monitoring sites in a river. The ensemble model TNX improved the performance by 2.1%-6.1% and 4.3%-22.0% relative to the best baseline deep learning model for the short-step and long-step water quality prediction, and it can capture the variation pattern of water quality parameters by only predicting the trend component of raw data after STL decomposition. The STNX model, with spatio-temporal attention, obtained 0.5%-2.4% and 2.3%-5.7% higher performance compared to the TNX model for the short-step and long-step water quality prediction, and such improvement was more effective in mitigating the prediction shift patterns of long-step prediction. Moreover, the model interpretation results consistently demonstrated positive relationship patterns across all monitoring sites. However, the significance of seven specific monitoring sites diminished as the distance between the predicted and input monitoring sites increased. This study provides an ensemble modeling approach based on STL decomposition for improving short-step and long-step prediction of river water quality parameter, and understands the impact of complex spatial information on deep learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
森花完成签到,获得积分10
刚刚
刚刚
Shirley发布了新的文献求助10
刚刚
刚刚
刚刚
糯糯完成签到,获得积分10
1秒前
1秒前
nn发布了新的文献求助30
2秒前
keroro发布了新的文献求助10
2秒前
dhppp发布了新的文献求助10
2秒前
失眠双双完成签到,获得积分10
2秒前
刘立琛完成签到,获得积分10
2秒前
磊2024完成签到,获得积分10
2秒前
3秒前
晴天发布了新的文献求助20
3秒前
伯赏清涟完成签到,获得积分10
3秒前
3秒前
Owen应助Lmj采纳,获得10
4秒前
会撒娇的一曲完成签到,获得积分10
4秒前
温暖凡灵完成签到,获得积分10
5秒前
CCH完成签到,获得积分10
5秒前
北极星发布了新的文献求助10
5秒前
郜不正完成签到,获得积分10
5秒前
思源应助纸上的天下采纳,获得10
5秒前
无情的沛白完成签到,获得积分10
6秒前
6秒前
姜友舜发布了新的文献求助10
6秒前
tuo zhang发布了新的文献求助10
6秒前
刘亦菲暧昧对象完成签到 ,获得积分10
6秒前
dadadala完成签到 ,获得积分10
6秒前
zhuo完成签到,获得积分10
6秒前
不加糖的刘先森完成签到,获得积分10
6秒前
JIAca完成签到,获得积分10
6秒前
7秒前
7秒前
李林完成签到,获得积分10
7秒前
keroro完成签到,获得积分10
7秒前
能干凝冬完成签到,获得积分10
8秒前
ztt完成签到,获得积分10
8秒前
范范发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017