亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning with Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杰列夫完成签到 ,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得20
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
1分钟前
Lily完成签到,获得积分10
1分钟前
1分钟前
Lily发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jim完成签到,获得积分10
2分钟前
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
lzxbarry应助科研通管家采纳,获得50
3分钟前
lzxbarry应助科研通管家采纳,获得50
3分钟前
3分钟前
Hodlumm完成签到,获得积分10
3分钟前
LArry完成签到,获得积分10
3分钟前
Orange应助TXZ06采纳,获得10
3分钟前
英姑应助zwang688采纳,获得10
3分钟前
星辰大海应助TXZ06采纳,获得10
4分钟前
思源应助mervin采纳,获得10
4分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
zwang688发布了新的文献求助10
4分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
5分钟前
mervin发布了新的文献求助10
5分钟前
6分钟前
6分钟前
DannyNickolov发布了新的文献求助10
6分钟前
6分钟前
曲夜白完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750