Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning with Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助春天采纳,获得10
刚刚
力量发布了新的文献求助10
刚刚
刚刚
刚刚
zhw完成签到,获得积分10
1秒前
1秒前
1秒前
liu完成签到,获得积分10
1秒前
欧阳振应助61forsci采纳,获得10
2秒前
想喝奶茶发布了新的文献求助10
2秒前
alisa发布了新的文献求助10
2秒前
漠寒发布了新的文献求助10
2秒前
哈哈发布了新的文献求助10
2秒前
sun关闭了sun文献求助
3秒前
WHaha发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Timing侠发布了新的文献求助10
4秒前
坦率的文龙完成签到,获得积分10
5秒前
快乐滑板发布了新的文献求助10
5秒前
5秒前
清爽绣连完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
情怀应助顾思凡采纳,获得10
7秒前
zaadasd发布了新的文献求助20
7秒前
玖玖完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
冬嘉完成签到,获得积分10
9秒前
Ava应助DADA采纳,获得10
9秒前
现代的访曼应助nandiaozhimu采纳,获得20
10秒前
10秒前
sakuraking完成签到,获得积分10
10秒前
123完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326