Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning With Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 106-117 被引量:5
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Verritis完成签到,获得积分10
1秒前
1秒前
可爱的函函应助孙伟健采纳,获得10
1秒前
直率千柳完成签到 ,获得积分20
1秒前
机智的板栗完成签到,获得积分20
1秒前
徐赛婷发布了新的文献求助10
2秒前
NexusExplorer应助wang采纳,获得10
2秒前
2秒前
白水发布了新的文献求助10
2秒前
Lin发布了新的文献求助10
2秒前
et完成签到,获得积分10
3秒前
3秒前
科研通AI6应助畅快醉冬采纳,获得10
3秒前
3秒前
周煜锦发布了新的文献求助10
4秒前
4秒前
4秒前
ZM发布了新的文献求助10
4秒前
4秒前
Ywffffff发布了新的文献求助10
4秒前
Cheney发布了新的文献求助10
5秒前
zzuzjx应助贰什柒采纳,获得10
5秒前
5秒前
5秒前
亚尔完成签到,获得积分10
5秒前
青云发布了新的文献求助10
5秒前
6秒前
软语发布了新的文献求助10
6秒前
et发布了新的文献求助10
6秒前
鱼鱼发布了新的文献求助10
6秒前
Fledge0611完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
juzitinghai发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565