Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning with Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅彤发布了新的文献求助10
1秒前
赵哈哈哈完成签到,获得积分10
1秒前
尛破孩完成签到,获得积分10
1秒前
Owen应助汪汪队立大功采纳,获得10
1秒前
Ava应助微不足道采纳,获得10
2秒前
3秒前
3秒前
香蕉觅云应助zzy采纳,获得10
3秒前
3秒前
4秒前
酷炫的水蓝完成签到,获得积分10
4秒前
牢鸿完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助少年采纳,获得10
5秒前
情怀应助生活不是电影采纳,获得10
6秒前
廖骏完成签到,获得积分10
7秒前
wanci应助悦悦采纳,获得10
7秒前
dl发布了新的文献求助10
8秒前
8秒前
英姑应助Ivy采纳,获得10
8秒前
橙子发布了新的文献求助10
9秒前
来个靠谱点的名字完成签到 ,获得积分10
9秒前
三岁半完成签到,获得积分10
10秒前
ding应助谦让的语儿采纳,获得10
10秒前
11秒前
娜是一阵风完成签到,获得积分10
11秒前
面面完成签到,获得积分10
11秒前
无趣养乐多完成签到 ,获得积分10
13秒前
天一完成签到,获得积分10
13秒前
14秒前
三岁半发布了新的文献求助10
14秒前
JOKE发布了新的文献求助10
19秒前
白剑通完成签到,获得积分10
19秒前
19秒前
yuanshengyouji完成签到,获得积分10
20秒前
苹果花完成签到,获得积分10
21秒前
21秒前
完美世界应助科研通管家采纳,获得10
24秒前
Mutsu应助科研通管家采纳,获得20
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323