Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning With Neural Architecture Search

计算机科学 迭代重建 人工智能 建筑 医学影像学 计算机视觉 艺术 视觉艺术
作者
Ruoyou Wu,Cheng Li,Juan Zou,Xinfeng Liu,Hairong Zheng,Shanshan Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (1): 106-117 被引量:5
标识
DOI:10.1109/tmi.2024.3432388
摘要

Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Tycoon采纳,获得10
刚刚
丘比特应助布鲁鲁采纳,获得10
1秒前
4秒前
杰杰大叔发布了新的文献求助10
4秒前
田様应助Zy采纳,获得10
5秒前
春风吹叁旬完成签到,获得积分20
7秒前
8秒前
9秒前
10秒前
orixero应助平淡的冰巧采纳,获得10
11秒前
12秒前
李密完成签到 ,获得积分10
13秒前
白日做梦完成签到 ,获得积分10
13秒前
mm_zxh完成签到,获得积分10
13秒前
阿航完成签到,获得积分10
14秒前
小许发布了新的文献求助10
14秒前
一勺晚安z发布了新的文献求助10
15秒前
oxygen253完成签到,获得积分10
17秒前
19秒前
橙子爱吃火龙果完成签到 ,获得积分10
19秒前
西西完成签到 ,获得积分10
22秒前
mz11完成签到,获得积分10
22秒前
23秒前
23秒前
Tycoon发布了新的文献求助10
25秒前
李天王完成签到,获得积分10
25秒前
tanrui发布了新的文献求助10
26秒前
26秒前
大西瓜发布了新的文献求助10
27秒前
领导范儿应助现代雪柳采纳,获得10
29秒前
Akim应助Tycoon采纳,获得10
31秒前
Iceshadows发布了新的文献求助10
31秒前
sci大佬完成签到,获得积分10
32秒前
33秒前
闲鱼电脑完成签到,获得积分10
35秒前
35秒前
37秒前
37秒前
41秒前
osteoclast发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160