重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Slim-YOLOv8: A fast and accurate algorithm for surface defect detection of steel strips

条状物 算法 曲面(拓扑) 材料科学 计算机科学 结构工程 工程类 数学 几何学
作者
Jia Zhao,Song Liu,Han Tao,Wanming Liu
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241266717
摘要

Steel strip is an extremely important industrial material and is widely used in various industrial fields. During the production process, surface defects need to be detected quickly and accurately. This study proposes a model. This study proposes a new slim-YOLOv8 (lightweight YOLOv8) detection model. The model is based on YOLOv8 and adopts a lightweight design paradigm, which reduces the number of parameters of the model and enhances the detection real-time performance. At the same time, an online reparameterization method is introduced to enhance the feature extraction capability of the network without raising the inference cost, and to improve the model's detection accuracy for complex defects. Finally, an auxiliary training head that can provide richer gradient information is added to the model to help train the model while preventing model overfitting. The performance of slim-YOLOv8 in mean average precision and parameters was evaluated on the well-known steel strip surface defect detection dataset NEU-DET, reaching a mAP of 85.8% at IoU 0.50 and 50.3% in the IoU 0.50–0.95 range. This is an improvement of 8.3% and 3%, respectively, compared to the baseline model. Meanwhile, the number of parameters of the model was reduced from 3.0 M to 2.7 M, which is 7% lower than the baseline model. The experimental results show that slim-YOLOv8 uses a smaller number of parameters, but has higher accuracy and is able to detect various defects in the dataset well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Animagus应助环状托叶痕采纳,获得10
1秒前
甜蜜的向卉完成签到,获得积分10
3秒前
Owen应助黄钦清采纳,获得10
3秒前
科研通AI2S应助苏泠叶采纳,获得30
3秒前
3秒前
嘿嘿嘿完成签到,获得积分10
3秒前
科目三应助顺利的毛衣采纳,获得10
4秒前
xtt发布了新的文献求助10
4秒前
MiserableYouth完成签到,获得积分10
4秒前
大个应助咖啡豆采纳,获得10
5秒前
眯眯眼的黎昕完成签到 ,获得积分10
5秒前
浮游应助yangminmin采纳,获得10
5秒前
zhengly23完成签到 ,获得积分10
5秒前
酷波er应助Library采纳,获得10
6秒前
6秒前
菇菇完成签到,获得积分10
6秒前
怕孤独的千琴完成签到 ,获得积分10
7秒前
沉静篮球完成签到 ,获得积分10
7秒前
机智的凝丝完成签到 ,获得积分10
8秒前
8秒前
icypz628发布了新的文献求助100
8秒前
8秒前
8秒前
我是老大应助Davidjin采纳,获得10
8秒前
小二郎应助养猪骑士采纳,获得10
9秒前
9秒前
老王完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
小马甲应助落后保温杯采纳,获得10
10秒前
farmeryxt完成签到,获得积分10
10秒前
在水一方应助zhenya采纳,获得10
10秒前
11秒前
11秒前
浮游应助客服小祥采纳,获得10
11秒前
12秒前
phoebe完成签到,获得积分10
12秒前
12秒前
12秒前
怕孤独的千琴关注了科研通微信公众号
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654