已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Slim-YOLOv8: A fast and accurate algorithm for surface defect detection of steel strips

条状物 算法 曲面(拓扑) 材料科学 计算机科学 结构工程 工程类 数学 几何学
作者
Jia Zhao,Song Liu,Han Tao,Wanming Liu
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241266717
摘要

Steel strip is an extremely important industrial material and is widely used in various industrial fields. During the production process, surface defects need to be detected quickly and accurately. This study proposes a model. This study proposes a new slim-YOLOv8 (lightweight YOLOv8) detection model. The model is based on YOLOv8 and adopts a lightweight design paradigm, which reduces the number of parameters of the model and enhances the detection real-time performance. At the same time, an online reparameterization method is introduced to enhance the feature extraction capability of the network without raising the inference cost, and to improve the model's detection accuracy for complex defects. Finally, an auxiliary training head that can provide richer gradient information is added to the model to help train the model while preventing model overfitting. The performance of slim-YOLOv8 in mean average precision and parameters was evaluated on the well-known steel strip surface defect detection dataset NEU-DET, reaching a mAP of 85.8% at IoU 0.50 and 50.3% in the IoU 0.50–0.95 range. This is an improvement of 8.3% and 3%, respectively, compared to the baseline model. Meanwhile, the number of parameters of the model was reduced from 3.0 M to 2.7 M, which is 7% lower than the baseline model. The experimental results show that slim-YOLOv8 uses a smaller number of parameters, but has higher accuracy and is able to detect various defects in the dataset well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助微光熠采纳,获得10
刚刚
温暖书文完成签到,获得积分10
1秒前
SciGPT应助111采纳,获得10
1秒前
YY发布了新的文献求助30
1秒前
YEM发布了新的文献求助10
1秒前
zhangwenjie完成签到 ,获得积分10
2秒前
慕青应助坚强素采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ceeray23应助科研通管家采纳,获得10
3秒前
清秀的小刺猬应助施少雄采纳,获得10
5秒前
bai发布了新的文献求助20
5秒前
Ql1987发布了新的文献求助10
6秒前
星熠完成签到,获得积分10
6秒前
7秒前
哆面体完成签到,获得积分10
8秒前
AngeW发布了新的文献求助100
12秒前
万能图书馆应助Bearbiscuit采纳,获得10
12秒前
Akim应助Bearbiscuit采纳,获得10
12秒前
大个应助Bearbiscuit采纳,获得10
12秒前
CodeCraft应助Bearbiscuit采纳,获得10
12秒前
李爱国应助Bearbiscuit采纳,获得10
12秒前
斯文败类应助Bearbiscuit采纳,获得10
12秒前
思源应助Bearbiscuit采纳,获得10
12秒前
英俊的铭应助Bearbiscuit采纳,获得10
13秒前
ding应助Bearbiscuit采纳,获得10
13秒前
情怀应助Bearbiscuit采纳,获得10
13秒前
15秒前
17秒前
bkagyin应助Bearbiscuit采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102