Slim-YOLOv8: A fast and accurate algorithm for surface defect detection of steel strips

条状物 算法 曲面(拓扑) 材料科学 计算机科学 结构工程 工程类 数学 几何学
作者
Jia Zhao,Song Liu,Han Tao,Wanming Liu
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241266717
摘要

Steel strip is an extremely important industrial material and is widely used in various industrial fields. During the production process, surface defects need to be detected quickly and accurately. This study proposes a model. This study proposes a new slim-YOLOv8 (lightweight YOLOv8) detection model. The model is based on YOLOv8 and adopts a lightweight design paradigm, which reduces the number of parameters of the model and enhances the detection real-time performance. At the same time, an online reparameterization method is introduced to enhance the feature extraction capability of the network without raising the inference cost, and to improve the model's detection accuracy for complex defects. Finally, an auxiliary training head that can provide richer gradient information is added to the model to help train the model while preventing model overfitting. The performance of slim-YOLOv8 in mean average precision and parameters was evaluated on the well-known steel strip surface defect detection dataset NEU-DET, reaching a mAP of 85.8% at IoU 0.50 and 50.3% in the IoU 0.50–0.95 range. This is an improvement of 8.3% and 3%, respectively, compared to the baseline model. Meanwhile, the number of parameters of the model was reduced from 3.0 M to 2.7 M, which is 7% lower than the baseline model. The experimental results show that slim-YOLOv8 uses a smaller number of parameters, but has higher accuracy and is able to detect various defects in the dataset well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的荷花完成签到,获得积分10
刚刚
元谷雪发布了新的文献求助10
刚刚
哈嘿哈嘿哒完成签到,获得积分10
刚刚
科研汪星人完成签到,获得积分10
刚刚
hugeyoung完成签到,获得积分10
1秒前
张肥肥发布了新的文献求助10
1秒前
Tengami应助鹿鸣鱼跃采纳,获得10
1秒前
1秒前
清新的初夏完成签到,获得积分20
1秒前
今迟小姐完成签到,获得积分10
2秒前
759应助陈c采纳,获得10
3秒前
4秒前
4秒前
4秒前
金皮卡发布了新的文献求助10
4秒前
GuGuGaGaAH发布了新的文献求助10
5秒前
AAA发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
深情冷雪发布了新的文献求助10
5秒前
6秒前
包宇完成签到,获得积分10
6秒前
6秒前
6秒前
降临完成签到,获得积分10
6秒前
Orange应助壮观的可以采纳,获得30
6秒前
君无邪发布了新的文献求助10
7秒前
Owen应助Zeng采纳,获得10
7秒前
Lucas应助xzh采纳,获得10
7秒前
彪壮的金毛完成签到,获得积分10
7秒前
7秒前
酷波er应助单薄枕头采纳,获得10
8秒前
8秒前
舒心乐荷完成签到,获得积分10
9秒前
FashionBoy应助调皮的幻梅采纳,获得10
9秒前
只想摆烂完成签到,获得积分10
9秒前
雨张完成签到,获得积分10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905