亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Corporate bond default prediction using bilateral topic information of credit rating reports

债券信用评级 信用评级 债券 公司债券 业务 精算学 信用风险 金融体系 人工智能 计算机科学 资信证明 财务
作者
Wanning Lu,Bo Chen,Cuiqing Jiang,Zhao Wang,Yong Ding
出处
期刊:International journal of financial engineering [World Scientific]
被引量:1
标识
DOI:10.1142/s2424786324430023
摘要

The default of corporate bonds can result in large financial losses as well as irreparable harm to investors’ trust and the economy as a whole, which implies that the identification of corporate bond default must be done promptly and properly. Current studies mainly rely on accounting and/or macroeconomic data and use the credit rank (CR) to disclose the credit status of corporate bonds in the default prediction task. However, the textual data of credit rating reports (CRRs) contain richer and more comprehensive information and are neglected in related work. In this paper, we propose a novel framework that draws on the unstructured data in CRR to predict the default of corporate bonds. We extract the rating opinion sentences (categorized as positive and negative) from the collected CRR files and use latent Dirichlet allocation (LDA) models to mine topic information. The bilateral topic information of positive and negative opinions can reflect the anti-risk ability and potential risk of corporate bonds, respectively, based on which the constructed topic features are used for default prediction. Results on real-world Chinese corporate bonds dataset show that the bilateral topic information of CRR can significantly improve the predicting power of models (LR, SVM, KNN and MLP) under three performance metrics (AUC, KS and H-measure). By analyzing the ranking of topic features using SHAP value, the proposed framework can explain the factors that affect bond defaults, which can provide a basis for the decision-making of investment behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐小狗发布了新的文献求助10
1分钟前
斯文败类应助热心小松鼠采纳,获得10
2分钟前
李健应助热心小松鼠采纳,获得30
3分钟前
深情安青应助热心小松鼠采纳,获得10
3分钟前
香蕉觅云应助热心小松鼠采纳,获得10
3分钟前
领导范儿应助热心小松鼠采纳,获得10
3分钟前
Lucas应助热心小松鼠采纳,获得10
3分钟前
小蘑菇应助热心小松鼠采纳,获得10
3分钟前
小二郎应助热心小松鼠采纳,获得10
3分钟前
科研通AI2S应助热心小松鼠采纳,获得10
3分钟前
科研通AI2S应助热心小松鼠采纳,获得10
3分钟前
科研通AI2S应助热心小松鼠采纳,获得10
3分钟前
3分钟前
立邦芝士完成签到,获得积分10
4分钟前
4分钟前
yun发布了新的文献求助10
4分钟前
Anthocyanidin完成签到,获得积分10
5分钟前
肆肆完成签到,获得积分10
6分钟前
yun完成签到,获得积分10
6分钟前
bocky完成签到 ,获得积分10
6分钟前
星辰大海应助Yililusiours采纳,获得10
7分钟前
7分钟前
7分钟前
Yililusiours发布了新的文献求助10
8分钟前
丹妮完成签到 ,获得积分10
9分钟前
顾矜应助科研通管家采纳,获得10
9分钟前
乐乐应助科研通管家采纳,获得10
9分钟前
万能图书馆应助寻123采纳,获得10
10分钟前
10分钟前
寻123发布了新的文献求助10
10分钟前
寻123完成签到,获得积分10
10分钟前
11分钟前
Yililusiours完成签到,获得积分10
11分钟前
14分钟前
小哩笑笑发布了新的文献求助30
15分钟前
zyjsunye完成签到 ,获得积分0
15分钟前
丘比特应助科研通管家采纳,获得10
15分钟前
酷波er应助热心小松鼠采纳,获得30
16分钟前
大个应助热心小松鼠采纳,获得10
16分钟前
丘比特应助热心小松鼠采纳,获得10
16分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268760
求助须知:如何正确求助?哪些是违规求助? 2908158
关于积分的说明 8344883
捐赠科研通 2578564
什么是DOI,文献DOI怎么找? 1402206
科研通“疑难数据库(出版商)”最低求助积分说明 655352
邀请新用户注册赠送积分活动 634490