M3T-LM: A multi-modal multi-task learning model for jointly predicting patient length of stay and mortality

任务(项目管理) 计算机科学 情态动词 人工智能 机器学习 工程类 化学 系统工程 高分子化学
作者
Junde Chen,Qing Li,Feng Liu,Yuxin Wen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:183: 109237-109237
标识
DOI:10.1016/j.compbiomed.2024.109237
摘要

Ensuring accurate predictions of inpatient length of stay (LoS) and mortality rates is essential for enhancing hospital service efficiency, particularly in light of the constraints posed by limited healthcare resources. Integrative analysis of heterogeneous clinic record data from different sources can hold great promise for improving the prognosis and diagnosis level of LoS and mortality. Currently, most existing studies solely focus on single data modality or tend to single-task learning, i.e., training LoS and mortality tasks separately. This limits the utilization of available multi-modal data and prevents the sharing of feature representations that could capture correlations between different tasks, ultimately hindering the model's performance. To address the challenge, this study proposes a novel Multi-Modal Multi-Task learning model, termed as M3T-LM, to integrate clinic records to predict inpatients' LoS and mortality simultaneously. The M3T-LM framework incorporates multiple data modalities by constructing sub-models tailored to each modality. Specifically, a novel attention-embedded one-dimensional (1D) convolutional neural network (CNN) is designed to handle numerical data. For clinical notes, they are converted into sequence data, and then two long short-term memory (LSTM) networks are exploited to model on textual sequence data. A two-dimensional (2D) CNN architecture, noted as CRXMDL, is designed to extract high-level features from chest X-ray (CXR) images. Subsequently, multiple sub-models are integrated to formulate the M3T-LM to capture the correlations between patient LoS and modality prediction tasks. The efficiency of the proposed method is validated on the MIMIC-IV dataset. The proposed method attained a test MAE of 5.54 for LoS prediction and a test F1 of 0.876 for mortality prediction. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) methods in tackling mixed regression and classification tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
舒心的跳跳糖完成签到,获得积分10
2秒前
小黑完成签到 ,获得积分10
2秒前
3秒前
4秒前
充电宝应助四叶菜采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
zjm发布了新的文献求助10
4秒前
傲娇迎南完成签到,获得积分10
4秒前
不知道叫个啥完成签到 ,获得积分10
5秒前
majianfu完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
TT001发布了新的文献求助10
7秒前
9秒前
毛健发布了新的文献求助10
9秒前
BowieHuang应助谨慎的寒松采纳,获得10
9秒前
四叶菜完成签到,获得积分20
10秒前
finish完成签到 ,获得积分10
13秒前
烟花应助正在通话中采纳,获得10
13秒前
14秒前
doctorduanmu完成签到,获得积分10
14秒前
14秒前
15秒前
ttkx_8应助天份采纳,获得10
15秒前
万能图书馆应助qiu采纳,获得10
16秒前
16秒前
WJR完成签到,获得积分10
17秒前
17秒前
米亚完成签到 ,获得积分10
18秒前
冰糖雪梨完成签到,获得积分10
19秒前
上官若男应助毛健采纳,获得10
19秒前
WJR发布了新的文献求助10
20秒前
Mcintosh完成签到,获得积分10
20秒前
搬砖美少女完成签到,获得积分10
21秒前
sevenlalala完成签到,获得积分10
21秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742729
求助须知:如何正确求助?哪些是违规求助? 5409935
关于积分的说明 15345601
捐赠科研通 4883834
什么是DOI,文献DOI怎么找? 2625399
邀请新用户注册赠送积分活动 1574188
关于科研通互助平台的介绍 1531146