M3T-LM: A multi-modal multi-task learning model for jointly predicting patient length of stay and mortality

任务(项目管理) 计算机科学 情态动词 人工智能 机器学习 工程类 化学 系统工程 高分子化学
作者
Junde Chen,Qing Li,Feng Liu,Yuxin Wen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:183: 109237-109237
标识
DOI:10.1016/j.compbiomed.2024.109237
摘要

Ensuring accurate predictions of inpatient length of stay (LoS) and mortality rates is essential for enhancing hospital service efficiency, particularly in light of the constraints posed by limited healthcare resources. Integrative analysis of heterogeneous clinic record data from different sources can hold great promise for improving the prognosis and diagnosis level of LoS and mortality. Currently, most existing studies solely focus on single data modality or tend to single-task learning, i.e., training LoS and mortality tasks separately. This limits the utilization of available multi-modal data and prevents the sharing of feature representations that could capture correlations between different tasks, ultimately hindering the model's performance. To address the challenge, this study proposes a novel Multi-Modal Multi-Task learning model, termed as M3T-LM, to integrate clinic records to predict inpatients' LoS and mortality simultaneously. The M3T-LM framework incorporates multiple data modalities by constructing sub-models tailored to each modality. Specifically, a novel attention-embedded one-dimensional (1D) convolutional neural network (CNN) is designed to handle numerical data. For clinical notes, they are converted into sequence data, and then two long short-term memory (LSTM) networks are exploited to model on textual sequence data. A two-dimensional (2D) CNN architecture, noted as CRXMDL, is designed to extract high-level features from chest X-ray (CXR) images. Subsequently, multiple sub-models are integrated to formulate the M3T-LM to capture the correlations between patient LoS and modality prediction tasks. The efficiency of the proposed method is validated on the MIMIC-IV dataset. The proposed method attained a test MAE of 5.54 for LoS prediction and a test F1 of 0.876 for mortality prediction. The experimental results demonstrate that our approach outperforms state-of-the-art (SOTA) methods in tackling mixed regression and classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
蘑菇腿发布了新的文献求助10
1秒前
yao学渣完成签到 ,获得积分10
2秒前
2秒前
3秒前
酷酷妙梦发布了新的文献求助10
3秒前
3秒前
wenchy完成签到,获得积分10
3秒前
4秒前
4秒前
lyl12345发布了新的文献求助10
5秒前
可爱的函函应助YangMengJing_采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
西南楚留香完成签到,获得积分0
6秒前
此晴可待发布了新的文献求助10
7秒前
8秒前
周小浪完成签到,获得积分10
8秒前
8秒前
852应助梁帅琦采纳,获得30
8秒前
yecheng完成签到,获得积分10
8秒前
9秒前
9秒前
下次一定早点睡完成签到,获得积分10
9秒前
Hello应助喜悦兔子采纳,获得10
9秒前
王博士发布了新的文献求助10
9秒前
9秒前
蹦出通通完成签到,获得积分10
10秒前
10秒前
10秒前
SC武完成签到,获得积分10
10秒前
心灵美语兰完成签到 ,获得积分10
11秒前
lhowy发布了新的文献求助10
11秒前
11秒前
11秒前
愤怒的小马完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023175
求助须知:如何正确求助?哪些是违规求助? 3563272
关于积分的说明 11341846
捐赠科研通 3294815
什么是DOI,文献DOI怎么找? 1814780
邀请新用户注册赠送积分活动 889460
科研通“疑难数据库(出版商)”最低求助积分说明 812964