Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion

计算机科学 骨科手术 可解释性 医学诊断 人工智能 骨关节炎 多样性(控制论) 医学 机器学习 外科 病理 替代医学
作者
Laith Alzubaidi,Khamael Al-Dulaimi,Asma Salhi,Zaenab Alammar,Mohammed A. Fadhel,A. S. Albahri,A.H. Alamoodi,O. S. Albahri,Amjad F. Hasan,Jinshuai Bai,Luke Gilliland,Jing Peng,Marco Branni,Tristan Shuker,Kenneth Cutbush,José Santamaría,Catarina Moreira,Chun Ouyang,Ye Duan,Mohamed Manoufali,Mohammad Jomaa,Ashish Gupta,Amin Abbosh,Yuantong Gu
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:155: 102935-102935 被引量:7
标识
DOI:10.1016/j.artmed.2024.102935
摘要

Deep learning (DL) in orthopaedics has gained significant attention in recent years. Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks, including fracture detection, bone tumour diagnosis, implant recognition, and evaluation of osteoarthritis severity. The utilisation of DL is expected to increase, owing to its ability to present accurate diagnoses more efficiently than traditional methods in many scenarios. This reduces the time and cost of diagnosis for patients and orthopaedic surgeons. To our knowledge, no exclusive study has comprehensively reviewed all aspects of DL currently used in orthopaedic practice. This review addresses this knowledge gap using articles from Science Direct, Scopus, IEEE Xplore, and Web of Science between 2017 and 2023. The authors begin with the motivation for using DL in orthopaedics, including its ability to enhance diagnosis and treatment planning. The review then covers various applications of DL in orthopaedics, including fracture detection, detection of supraspinatus tears using MRI, osteoarthritis, prediction of types of arthroplasty implants, bone age assessment, and detection of joint-specific soft tissue disease. We also examine the challenges for implementing DL in orthopaedics, including the scarcity of data to train DL and the lack of interpretability, as well as possible solutions to these common pitfalls. Our work highlights the requirements to achieve trustworthiness in the outcomes generated by DL, including the need for accuracy, explainability, and fairness in the DL models. We pay particular attention to fusion techniques as one of the ways to increase trustworthiness, which have also been used to address the common multimodality in orthopaedics. Finally, we have reviewed the approval requirements set forth by the US Food and Drug Administration to enable the use of DL applications. As such, we aim to have this review function as a guide for researchers to develop a reliable DL application for orthopaedic tasks from scratch for use in the market.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光发布了新的文献求助10
刚刚
刚刚
建新发布了新的文献求助10
刚刚
1秒前
一只蓉馍馍完成签到,获得积分10
2秒前
jmc关闭了jmc文献求助
2秒前
2秒前
研友完成签到,获得积分10
3秒前
思源应助explorer采纳,获得30
3秒前
WZM完成签到 ,获得积分10
4秒前
柚子发布了新的文献求助10
4秒前
iNuo发布了新的文献求助30
5秒前
meiying发布了新的文献求助10
6秒前
6秒前
double发布了新的文献求助10
6秒前
bkagyin应助hao采纳,获得30
7秒前
ecloud发布了新的文献求助10
8秒前
10秒前
852应助meiying采纳,获得10
10秒前
11秒前
DKL完成签到,获得积分10
12秒前
12秒前
zlfan2197发布了新的文献求助10
13秒前
wax应助狮子最爱吃芒果采纳,获得10
13秒前
13秒前
柚子完成签到,获得积分10
14秒前
CatSYL完成签到 ,获得积分10
14秒前
等你下课完成签到 ,获得积分10
15秒前
海孩子完成签到,获得积分10
15秒前
淳于语海发布了新的文献求助10
16秒前
zzz发布了新的文献求助10
16秒前
songsong丿完成签到,获得积分10
16秒前
Ava应助优雅草丛采纳,获得10
16秒前
18秒前
李健的小迷弟应助zz采纳,获得10
18秒前
18秒前
bkagyin应助诗瑜采纳,获得10
18秒前
认真搞科研啦完成签到,获得积分10
19秒前
19秒前
茜茜完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3385901
求助须知:如何正确求助?哪些是违规求助? 2999238
关于积分的说明 8784238
捐赠科研通 2684943
什么是DOI,文献DOI怎么找? 1470706
科研通“疑难数据库(出版商)”最低求助积分说明 679921
邀请新用户注册赠送积分活动 672421