Advances in machine learning-driven pore pressure prediction in complex geological settings

钻探 孔隙水压力 计算机科学 岩石物理学 机器学习 人工神经网络 支持向量机 预测建模 数据挖掘 鉴定(生物学) 人工智能 石油工程 地质学 工程类 岩土工程 机械工程 植物 多孔性 生物
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Computer science & IT research journal [Fair East Publishers]
卷期号:5 (7): 1648-1665 被引量:5
标识
DOI:10.51594/csitrj.v5i7.1350
摘要

Advances in machine learning (ML) have revolutionized pore pressure prediction in complex geological settings, addressing critical challenges in oil and gas exploration and production. Traditionally, predicting pore pressure accurately in heterogeneous and anisotropic formations has been fraught with uncertainties due to the limitations of conventional geophysical and petrophysical methods. Recent developments in ML techniques offer enhanced precision and reliability in pore pressure estimation, leveraging vast datasets and sophisticated algorithms to analyze and interpret geological complexities. ML-driven approaches utilize a variety of data sources, including well logs, seismic data, and drilling parameters, to train predictive models that can handle the non-linear and multi-dimensional nature of subsurface conditions. Techniques such as neural networks, support vector machines, and ensemble learning methods have shown significant promise in capturing the intricate relationships between geological variables and pore pressure. These models can adaptively learn from new data, improving their predictive capabilities over time. A notable advantage of ML-driven pore pressure prediction is its ability to integrate disparate data types and scales, providing a holistic understanding of subsurface pressure regimes. This integration enhances the accuracy of pressure forecasts, which is crucial for wellbore stability, drilling safety, and hydrocarbon recovery. For instance, real-time data from drilling operations can be fed into ML models to dynamically update pore pressure estimates, allowing for immediate adjustments to drilling plans and reducing the risk of blowouts or other drilling hazards. Moreover, ML techniques facilitate the identification of subtle patterns and trends that might be overlooked by traditional methods. This capability is particularly valuable in complex geological settings, such as deep-water environments, tectonically active regions, and unconventional reservoirs, where conventional predictive models often fall short. Despite the promising advances, challenges remain in the widespread adoption of ML-driven pore pressure prediction. These include the need for extensive training datasets, the interpretability of ML models, and the integration of ML workflows into existing geoscientific practices. Addressing these challenges requires interdisciplinary collaboration between geoscientists, data scientists, and engineers to develop robust, user-friendly ML solutions. In summary, ML-driven pore pressure prediction represents a significant advancement in managing the complexities of subsurface geology. By enhancing predictive accuracy and reliability, these technologies are poised to improve safety, efficiency, and productivity in the oil and gas industry, particularly in challenging geological settings. Keywords: Advance, ML, Pore Pressure, Prediction, Geological Settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ryen完成签到,获得积分10
1秒前
1秒前
Jarwee完成签到,获得积分10
3秒前
fireking_sid完成签到,获得积分10
4秒前
5秒前
舒适的石头完成签到,获得积分10
5秒前
无极微光应助xue采纳,获得20
6秒前
meizi0109完成签到 ,获得积分10
7秒前
活泼的棒棒糖完成签到 ,获得积分10
7秒前
8秒前
10秒前
洛阳官人完成签到,获得积分10
12秒前
康师傅给康师傅的求助进行了留言
12秒前
12秒前
欧斌完成签到,获得积分10
12秒前
12秒前
12秒前
心行完成签到 ,获得积分10
13秒前
13秒前
甜美的瑾瑜完成签到,获得积分10
13秒前
14秒前
14秒前
热血马儿完成签到,获得积分10
14秒前
spp完成签到,获得积分10
14秒前
jieni完成签到,获得积分10
15秒前
橙子完成签到 ,获得积分10
16秒前
zheng華发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
lcx发布了新的文献求助10
18秒前
19秒前
陌上之心发布了新的文献求助10
20秒前
honey发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
24秒前
爱壹帆完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987