Advances in machine learning-driven pore pressure prediction in complex geological settings

钻探 孔隙水压力 计算机科学 岩石物理学 机器学习 人工神经网络 支持向量机 预测建模 数据挖掘 鉴定(生物学) 人工智能 石油工程 地质学 工程类 岩土工程 机械工程 植物 多孔性 生物
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Computer science & IT research journal [Fair East Publishers]
卷期号:5 (7): 1648-1665 被引量:5
标识
DOI:10.51594/csitrj.v5i7.1350
摘要

Advances in machine learning (ML) have revolutionized pore pressure prediction in complex geological settings, addressing critical challenges in oil and gas exploration and production. Traditionally, predicting pore pressure accurately in heterogeneous and anisotropic formations has been fraught with uncertainties due to the limitations of conventional geophysical and petrophysical methods. Recent developments in ML techniques offer enhanced precision and reliability in pore pressure estimation, leveraging vast datasets and sophisticated algorithms to analyze and interpret geological complexities. ML-driven approaches utilize a variety of data sources, including well logs, seismic data, and drilling parameters, to train predictive models that can handle the non-linear and multi-dimensional nature of subsurface conditions. Techniques such as neural networks, support vector machines, and ensemble learning methods have shown significant promise in capturing the intricate relationships between geological variables and pore pressure. These models can adaptively learn from new data, improving their predictive capabilities over time. A notable advantage of ML-driven pore pressure prediction is its ability to integrate disparate data types and scales, providing a holistic understanding of subsurface pressure regimes. This integration enhances the accuracy of pressure forecasts, which is crucial for wellbore stability, drilling safety, and hydrocarbon recovery. For instance, real-time data from drilling operations can be fed into ML models to dynamically update pore pressure estimates, allowing for immediate adjustments to drilling plans and reducing the risk of blowouts or other drilling hazards. Moreover, ML techniques facilitate the identification of subtle patterns and trends that might be overlooked by traditional methods. This capability is particularly valuable in complex geological settings, such as deep-water environments, tectonically active regions, and unconventional reservoirs, where conventional predictive models often fall short. Despite the promising advances, challenges remain in the widespread adoption of ML-driven pore pressure prediction. These include the need for extensive training datasets, the interpretability of ML models, and the integration of ML workflows into existing geoscientific practices. Addressing these challenges requires interdisciplinary collaboration between geoscientists, data scientists, and engineers to develop robust, user-friendly ML solutions. In summary, ML-driven pore pressure prediction represents a significant advancement in managing the complexities of subsurface geology. By enhancing predictive accuracy and reliability, these technologies are poised to improve safety, efficiency, and productivity in the oil and gas industry, particularly in challenging geological settings. Keywords: Advance, ML, Pore Pressure, Prediction, Geological Settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助enoot采纳,获得10
刚刚
JamesPei应助失眠的血茗采纳,获得10
刚刚
青山发布了新的文献求助10
刚刚
亻鱼发布了新的文献求助10
1秒前
脑洞疼应助成就的小熊猫采纳,获得10
1秒前
1秒前
waterclouds完成签到 ,获得积分10
1秒前
圆圈儿完成签到,获得积分10
1秒前
司空剑封完成签到,获得积分10
2秒前
2秒前
海棠yiyi完成签到,获得积分10
2秒前
2秒前
梁小鑫发布了新的文献求助10
2秒前
Jenny应助圈圈采纳,获得10
3秒前
内向青文完成签到,获得积分10
3秒前
lefora完成签到,获得积分10
3秒前
丰知然应助CO2采纳,获得10
4秒前
Zhihu完成签到,获得积分10
4秒前
feng完成签到,获得积分10
5秒前
5秒前
美丽稀完成签到,获得积分10
6秒前
PXY应助屁王采纳,获得10
6秒前
sunburst完成签到,获得积分10
6秒前
狼主完成签到 ,获得积分10
6秒前
吕亦寒完成签到,获得积分10
6秒前
junzilan发布了新的文献求助10
7秒前
ZL发布了新的文献求助10
7秒前
7秒前
亻鱼完成签到,获得积分10
7秒前
超级蘑菇完成签到 ,获得积分10
8秒前
8秒前
8秒前
congguitar完成签到,获得积分10
8秒前
9秒前
limof完成签到,获得积分20
9秒前
跳跃聪健发布了新的文献求助10
9秒前
168521kf完成签到,获得积分10
9秒前
10秒前
Avatar完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740