Advances in machine learning-driven pore pressure prediction in complex geological settings

钻探 孔隙水压力 计算机科学 岩石物理学 机器学习 人工神经网络 支持向量机 预测建模 数据挖掘 鉴定(生物学) 人工智能 石油工程 地质学 工程类 岩土工程 机械工程 植物 多孔性 生物
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Computer science & IT research journal [Fair East Publishers]
卷期号:5 (7): 1648-1665 被引量:5
标识
DOI:10.51594/csitrj.v5i7.1350
摘要

Advances in machine learning (ML) have revolutionized pore pressure prediction in complex geological settings, addressing critical challenges in oil and gas exploration and production. Traditionally, predicting pore pressure accurately in heterogeneous and anisotropic formations has been fraught with uncertainties due to the limitations of conventional geophysical and petrophysical methods. Recent developments in ML techniques offer enhanced precision and reliability in pore pressure estimation, leveraging vast datasets and sophisticated algorithms to analyze and interpret geological complexities. ML-driven approaches utilize a variety of data sources, including well logs, seismic data, and drilling parameters, to train predictive models that can handle the non-linear and multi-dimensional nature of subsurface conditions. Techniques such as neural networks, support vector machines, and ensemble learning methods have shown significant promise in capturing the intricate relationships between geological variables and pore pressure. These models can adaptively learn from new data, improving their predictive capabilities over time. A notable advantage of ML-driven pore pressure prediction is its ability to integrate disparate data types and scales, providing a holistic understanding of subsurface pressure regimes. This integration enhances the accuracy of pressure forecasts, which is crucial for wellbore stability, drilling safety, and hydrocarbon recovery. For instance, real-time data from drilling operations can be fed into ML models to dynamically update pore pressure estimates, allowing for immediate adjustments to drilling plans and reducing the risk of blowouts or other drilling hazards. Moreover, ML techniques facilitate the identification of subtle patterns and trends that might be overlooked by traditional methods. This capability is particularly valuable in complex geological settings, such as deep-water environments, tectonically active regions, and unconventional reservoirs, where conventional predictive models often fall short. Despite the promising advances, challenges remain in the widespread adoption of ML-driven pore pressure prediction. These include the need for extensive training datasets, the interpretability of ML models, and the integration of ML workflows into existing geoscientific practices. Addressing these challenges requires interdisciplinary collaboration between geoscientists, data scientists, and engineers to develop robust, user-friendly ML solutions. In summary, ML-driven pore pressure prediction represents a significant advancement in managing the complexities of subsurface geology. By enhancing predictive accuracy and reliability, these technologies are poised to improve safety, efficiency, and productivity in the oil and gas industry, particularly in challenging geological settings. Keywords: Advance, ML, Pore Pressure, Prediction, Geological Settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨石头应助Fu采纳,获得10
刚刚
活泼的傲薇完成签到,获得积分10
刚刚
上官若男应助liwei采纳,获得10
1秒前
JamesPei应助女神金采纳,获得10
1秒前
1秒前
Stevielau完成签到,获得积分10
2秒前
旺仔大馒头完成签到,获得积分10
3秒前
cui完成签到,获得积分10
3秒前
安静的颖应助害羞的煎蛋采纳,获得10
4秒前
Miss Xiang发布了新的文献求助10
4秒前
共享精神应助jusser采纳,获得10
4秒前
薄荷喵发布了新的文献求助150
5秒前
淡定的吐司完成签到 ,获得积分10
5秒前
桀桀桀发布了新的文献求助30
6秒前
6秒前
勤劳半芹发布了新的文献求助10
7秒前
8秒前
王雨晴完成签到,获得积分10
8秒前
完美世界应助WZY666采纳,获得30
9秒前
9秒前
发嗲的问安完成签到,获得积分20
10秒前
子车茗应助偏偏海采纳,获得30
11秒前
研友_Zrl2pL发布了新的文献求助10
11秒前
11秒前
小虎呀发布了新的文献求助10
13秒前
秭归完成签到,获得积分10
14秒前
14秒前
JINJIN发布了新的文献求助10
15秒前
舒心靖琪完成签到,获得积分20
15秒前
16秒前
17秒前
17秒前
舒心靖琪发布了新的文献求助30
20秒前
20秒前
脑洞疼应助橘子海采纳,获得10
20秒前
研友_Zrl2pL完成签到,获得积分20
21秒前
优美的安梦完成签到,获得积分10
21秒前
灵魂完成签到,获得积分10
22秒前
无花果应助Miss Xiang采纳,获得10
23秒前
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259477
求助须知:如何正确求助?哪些是违规求助? 2901093
关于积分的说明 8313913
捐赠科研通 2570455
什么是DOI,文献DOI怎么找? 1396534
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631566